# Chemisches Grundwissen Berufsfeld Chemie, Physik, Biologie

Dr. Gisela Katzer Prof. Dr. Franz Katzer

2., durchgesehene und erweiterte Auflage

**Handwerk und Technik · Hamburg** 

#### **Verwendete Zeichen**

| c Konzentration                                            | р               | Druck                                 |
|------------------------------------------------------------|-----------------|---------------------------------------|
| c Stoffmengenkonzentration                                 | $p_0$           | Normdruck                             |
| $c_{\rm eq}$ Äquivalenzkonzentration                       | p <sub>T</sub>  | Druck bei Temperatur                  |
| c Lichtgeschwindigkeit                                     | $p_{\vartheta}$ | Druck bei Temperatur $\vartheta$      |
| E <sub>O</sub> Standardpotential                           | p+              | Proton                                |
| EN Elektronegativität                                      | Q               | Ladung                                |
| e⁻, ⊝ Elektron                                             | Q               | Wärmeenergie                          |
| f Frequenz                                                 | R               | allgemeine Gaskonstante               |
| F <sub>el</sub> elektrostatische Kraft                     | S               | Entropie                              |
| F <sub>p</sub> Schmelztemperatur                           | $\Delta S$      | Entropieänderung                      |
| G freie Enthalpie                                          | S               | Spinquantenzahl                       |
| H Enthalpie                                                | T               | Temperatur in Kelvin                  |
| $\Delta H$ Enthalpieänderung                               | $T_0$           | Normtemperatur                        |
| $\Delta H_{B}$ Standardbildungsenthalpie                   | u               | Atommasseneinheit                     |
| $\Delta H_{\rm G}$ Gitterenthalpie                         | V               | Volumen                               |
| $\Delta H_{\rm H}$ Hydratationsenthalpie                   | V               | Molvolumen                            |
| $\Delta H_{L}$ Lösungsenthalpie                            | $V_0$           | Molvolumen bei 0 °C,                  |
| h PLANCKsches Wirkungsquantum                              |                 | molares Normvolumen                   |
| K, K <sub>c</sub> , K <sub>p</sub> Gleichgewichtskonstante | $V_{\vartheta}$ | Molvolumen bei ϑ                      |
| K <sub>p</sub> Siedetemperatur                             | $V_{T}$         | Molvolumen bei T                      |
| K <sub>D</sub> Dissoziationskonstante                      | W               | Energie                               |
| K <sub>S</sub> Säurekonstante                              | Z               | Äquivalenzzahl                        |
| K <sub>B</sub> Basenkonstante                              | α               | thermischer Ausdehungskoeffizient der |
| K <sub>L</sub> Löslichkeitsprodukt                         |                 | Gase                                  |
| KZ Koordinationszahl                                       | $\alpha$        | Dissoziationsgrad                     |
| / Nebenquantenzahl                                         | $\alpha$        | Protolysegrad                         |
| M molare Masse, Molmasse                                   | δ               | Zeichen für Polarität                 |
| m magnetische Quantenzahl                                  | 3               | Dielektrizitätskonstante              |
| m Masse                                                    | $\vartheta$     | Temperatur in °C                      |
| N <sub>A</sub> AVOGADROsche Konstante(Zahl)                | λ               | Wellenlänge                           |
| n Hauptquantenzahl                                         | $\mu$           | Dipolmoment                           |
| n Neutron                                                  | $\pi$           | Doppelbindung                         |
| n Stoffmenge, Anzahl der Mole                              | σ               | Einfachbindung                        |

#### ISBN 3.582.0**1272**.7 - 2. Auflage 2005

Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen Fällen bedarf der vorherigen schriftlichen Einwilligung des Verlages.

Hinweis zu § 52 a UrhG: Weder das Werk noch seine Teile dürfen ohne eine solche Einwilligung eingescannt und in ein Netzwerk eingestellt werden. Dies gilt auch für Intranets von Schulen und sonstigen Bildungseinrichtungen.

Verlag Handwerk und Technik G.m.b.H., Lademannbogen 135, 22339 Hamburg; Postfach 63 05 00, 22331 Hamburg E-Mail: info@handwerk-technik.de – Internet: www.handwerk-technik.de

Computersatz: comSet Helmut Ploß, 21031 Hamburg Druck: Offizin Andersen Nexö Leipzig GmbH, 04442 Zwenkau

|       | Einleitung                                                        | 11       |
|-------|-------------------------------------------------------------------|----------|
| 1     | Chemie und Physik                                                 | 12       |
| 1.1   | Arbeitsgebiete der Chemie und der Physik                          |          |
| 1.2   | Physik und physikalischer Vorgang                                 | 12       |
| 1.3   | Änderungen des Aggregatzustandes als Beispiel für physikalische   |          |
| 1.4   | Vorgänge                                                          | 12<br>15 |
| 1.5   | Chemische Eigenschaften                                           | 17       |
| 1.6   | Änderung von Eigenschaften als Merkmale eines chemischen Vorgangs | 18       |
| 2     | Stoffe                                                            | 19       |
| 2.1   | Einteilung der Stoffe nach Vorkommen und Verwendung               | 19       |
| 2.2   | Aggregatzustände von Stoffen                                      | 20       |
| 2.2.1 | Gase                                                              | 20       |
| 2.2.2 | Flüssigkeiten                                                     | 23       |
| 223   | Festkörper                                                        | 24       |
| 2.3   | Zusammensetzung von Stoffen                                       | 26       |
| 231   | Einteilung der Stoffe nach der Zusammensetzung                    | 26       |
| 2.3.2 | Mischungen – Gemische und Gemenge                                 | 27       |
| 2.3.3 | Reine Stoffe                                                      | 31       |
| 2.3.4 | Formeln                                                           | 34       |
| 2.3.5 | Gleichungen                                                       | 35       |
| 2.3.6 | Nomenklatur                                                       | 37       |
| 2.4   | Aufgaben zur Wiederholung von Kapitel 1 und 2                     | 39       |
| 3     | Bau der Atome                                                     | 40       |
| 3.1   | Geschichtliches                                                   | 40       |
| 3.2   | Elementarteilchen und Bau des Atomkerns                           | 44       |
| 3.3   | Protonen                                                          | 44       |
| 3.4   | Neutronen                                                         | 44       |
| 3.5   | Elektronen                                                        | 45       |
| 3.6   | Absolute und relative Atommasse                                   | 46       |
| 3.7   | Relative Molekülmasse                                             | 47       |
| 3.8   | Das Mol als Teilchen- oder Stoffmenge                             | 48       |
| 3.9   | Beziehung zwischen AVOGADROscher und LOSCHMIDTscher Zahl          | 4.0      |
| 0.40  | oder Konstante                                                    | 49       |
| 3.10  | Konzentrationsmaße                                                | 50       |
| 3.11  | Bau der Atomhülle                                                 | 50       |
| 3.12  | Aufgaben zur Wiederholung von Kapitel 3                           | 57       |
| 4     | Periodensystem                                                    | 58       |
| 4.1   | Periodizität der Eigenschaften                                    | 58       |
| 42    | Periodizität des Atombaus                                         | 60       |
| 4.3   | Energiestufen der Elektronen                                      | 62       |
| 4.4   | Periodizität des Atomvolumens                                     | 64       |
| 4.5   | Quantenmechanisches Modell der Atomhülle –                        |          |
|       | Erweiterung der Modellvorstellungen über das Atom                 | 65       |
| 4.5.1 | Linienspektren                                                    | 65       |
| 4.5.2 | Gequantelte Energie                                               | 66       |
| 4.5.3 | Quantenzahlen                                                     | 67       |
| 4.5.4 | Kästchenschreibweise der Elektronenkonfiguration                  | 70       |
| 4.5.5 | Orbital-Modell der Atomhülle                                      | 71       |
| 4.6   | Aufgaben zur Wiederholung von Kapitel 4, Abschnitt 4.1 bis 4.4    | 73       |

| 4.7                                    | Aufgaben zur Wiederholung von Kapitel 4, Abschnitt 4.5                                                                                                                                                                                                                    | 73                                            |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 5                                      | Primäre chemische Bindungen                                                                                                                                                                                                                                               | 74                                            |
| 5.1                                    | Elektronenpaarbildung durch Spinkopplung                                                                                                                                                                                                                                  | 74                                            |
| 5.2                                    | Wirkung der elektrostatischen Kräfte auf das bindende Elektronenpaar                                                                                                                                                                                                      | 75                                            |
| 5.3                                    | Ionenbindung oder Ionenbeziehung (heteropolare Bindung)                                                                                                                                                                                                                   |                                               |
| 5.3.1                                  | Bildung von Ionen                                                                                                                                                                                                                                                         |                                               |
| 5.3.2                                  | lonenwertigkeit oder lonenladung                                                                                                                                                                                                                                          | 79                                            |
| 5.3.3                                  | Redoxvorgang bei der Bildung von Ionen aus den Atomen                                                                                                                                                                                                                     | 79                                            |
| 5.3.4                                  | Elektronegativität                                                                                                                                                                                                                                                        |                                               |
| 5.3.5                                  | Struktur von Ionenverbindungen im festen Zustand – Ionengitter                                                                                                                                                                                                            |                                               |
| 5.4                                    | Atombindung (kovalente oder homöopolare Bindung)                                                                                                                                                                                                                          | 84                                            |
| 5.4.1                                  | Bildung gemeinsamer Elektronenpaare                                                                                                                                                                                                                                       |                                               |
| 5.4.2                                  | Unpolare Atombindung                                                                                                                                                                                                                                                      |                                               |
| 5.4.3                                  | Bindigkeit unpolarer Moleküle                                                                                                                                                                                                                                             |                                               |
| 5.4.4                                  | Bindungsenergie und Gitterenergie unpolarer Stoffe                                                                                                                                                                                                                        |                                               |
| 5.4.5                                  | Struktur von unpolaren Stoffen im festen Zustand – Molekülgitter                                                                                                                                                                                                          |                                               |
| 5.4.6                                  | Polare Atombindung                                                                                                                                                                                                                                                        |                                               |
| 5.4.7                                  | Bindigkeit polarer Moleküle und formale Oxidationszahl                                                                                                                                                                                                                    | 91                                            |
| 5.4.8                                  | Gestalt von Molekülen                                                                                                                                                                                                                                                     |                                               |
| 5.4.9                                  | Bindungslänge und Bindungsenergie in Molekülen                                                                                                                                                                                                                            |                                               |
| 5.4.10                                 | Deutung der Atombindung mithilfe des Orbitalmodells                                                                                                                                                                                                                       |                                               |
| 5.5                                    | Metallbindung                                                                                                                                                                                                                                                             |                                               |
| 5.6                                    | Übergänge zwischen den Bindungsarten                                                                                                                                                                                                                                      |                                               |
| 5.7                                    | Aufgaben zur Wiederholung von Kapitel 5                                                                                                                                                                                                                                   |                                               |
| 6.1<br>6.2<br>6.3<br>6.4<br>6.5<br>6.6 | Sekundäre Bindungen  Nahkräfte zwischen den Molekülen  Polare Moleküle – Dipolmoleküle  Einteilung der zwischenmolekularen Kräfte  Pol-Orientierungskräfte (KEESOM-Kräfte)  Induktionskräfte (DEBYE-Kräfte)  Dispersionskräfte (LONDON-Kräfte)  Wasserstoffbrückenbindung | 103<br>103<br>105<br>106<br>107<br>108<br>108 |
| 6.8<br>7                               | Aufgaben zur Wiederholung von Kapitel 6  Einige Elemente des Periodensystems und ihre Verbindungen                                                                                                                                                                        |                                               |
| 7.1                                    | Nichtmetalle                                                                                                                                                                                                                                                              |                                               |
| 7.1.1                                  | Stellung der Nichtmetalle im Periodensystem                                                                                                                                                                                                                               |                                               |
| 7.1.2                                  | Allgemeine Eigenschaften der Nichtmetalle                                                                                                                                                                                                                                 |                                               |
| 7.1.3                                  | Elemente der 7. Hauptgruppe – Halogene                                                                                                                                                                                                                                    |                                               |
| 7.1.4                                  | Elemente der 6. Hauptgruppe – Chalkogene                                                                                                                                                                                                                                  |                                               |
| 7.1.5                                  | Weitere Nichtmetalle und ihre Verbindungen                                                                                                                                                                                                                                |                                               |
| 7.2                                    | Metalle                                                                                                                                                                                                                                                                   | 122                                           |
| 7.2.1                                  | Stellung der Metalle im Periodensystem                                                                                                                                                                                                                                    | 122                                           |
| 7.2.2                                  | Allgemeine Eigenschaften der Metalle                                                                                                                                                                                                                                      | 122                                           |
| 7.2.3                                  | Kristallstruktur                                                                                                                                                                                                                                                          | 123                                           |
| 7.2.4                                  | Elemente der 1. Hauptgruppe – Alkalimetalle                                                                                                                                                                                                                               | 125                                           |
| 7.2.5                                  | Elemente der 2. Hauptgruppe – Erdalkalimetalle                                                                                                                                                                                                                            | 126                                           |
| 7.2.6                                  | Oxidation von Metallen                                                                                                                                                                                                                                                    | 127                                           |
| 7.3                                    | Säuren                                                                                                                                                                                                                                                                    | 128                                           |
| 7.3.1                                  | Definition der Säuren                                                                                                                                                                                                                                                     | 128                                           |
| 7.3.2                                  | Indikatoren                                                                                                                                                                                                                                                               | 129                                           |
| 7.3.3                                  | Sauerstofffreie Säuren                                                                                                                                                                                                                                                    | 130                                           |

| 7.3.4 | Sauerstoffhaltige Säuren oder Oxosäuren                                                                        |       |
|-------|----------------------------------------------------------------------------------------------------------------|-------|
| 7.3.5 | Flüchtige und schwerflüchtige Säuren                                                                           |       |
| 7.3.6 | Starke und schwache Säuren – Dissoziation und Hydratation                                                      |       |
| 7.3.7 | Reaktion von verdünnten Säuren mit Metallen                                                                    | . 140 |
| 7.3.8 | Redoxreaktionen mit oxydierenden Säuren                                                                        |       |
| 7.4   | Metallhydroxide, Basen, Laugen                                                                                 | . 143 |
| 7.4.1 | Definition der Hydroxide                                                                                       | . 143 |
| 7.4.2 | Weitere Säure-Base-Paare – Protolyse                                                                           |       |
| 7.4.3 | Erweiterung des Säure-Base-Begriffs – LEWIS-Säuren und LEWIS-Basen                                             |       |
| 7.4.4 | Bildung von Hydroxiden (Basen)                                                                                 | . 147 |
| 7.4.5 | Löslichkeit und Reaktionen von Metallhydroxiden (Basen)                                                        | . 148 |
| 7.4.6 | Ammoniumhydroxid                                                                                               | . 150 |
| 7.4.7 | Amphotere oder ampholytische Metalle                                                                           | . 151 |
| 7.5   | Salze als Ionenverbindungen zwischen Metallen und Nichtmetallen                                                | . 152 |
| 7.6   | Komplex- oder Koordinationsverbindungen                                                                        | . 155 |
| 7.7   | Aufgaben zur Wiederholung von Kapitel 7                                                                        |       |
|       |                                                                                                                |       |
| 8     | Stöchiometrische Berechnungen                                                                                  | 161   |
| 8.1   | Grundlegende Gesetze                                                                                           | . 161 |
| 8.2   | Schrittfolge beim chemischen Rechnen                                                                           |       |
| 8.3   | Rechenbeispiel für teilweisen Umsatz der Ausgangsstoffe                                                        |       |
| 8.4   | Rechenbeispiel für den Volumenumsatz                                                                           |       |
| 8.5   | Rechenbeispiel für die Metallgewinnung aus Erzen                                                               |       |
| 8.6   | Aufgaben zur Stöchiometrie                                                                                     |       |
|       | <b>3</b>                                                                                                       |       |
| 9     | Energieänderungen beim Ablauf chemischer Reaktionen                                                            | 166   |
| 9.1   | Stoffliche Systeme und Zustandsgrößen                                                                          | . 166 |
| 9.2   | Innere Energie                                                                                                 |       |
| 9.3   | Enthalpie                                                                                                      |       |
| 9.4   | HESSscher Satz                                                                                                 |       |
| 9.5   | Standard-Bildungsenthalpie                                                                                     |       |
| 9.6   | Aktivierung                                                                                                    |       |
| 9.7   | Exotherme und endotherme Reaktionen                                                                            | . 178 |
| 9.8   | Freie (Reaktions-)Enthalpie                                                                                    |       |
| 9.9   | Entropie                                                                                                       |       |
| 9.10  | Katalyse – Katalysatoren                                                                                       |       |
| 9.11  | Weitere Bedingungen für den Ablauf chemischer Vorgänge                                                         |       |
| 9.12  | Aufgaben zur Wiederholung von Kapitel 9                                                                        |       |
| •     | 7 tan gaaron = an 1110 ann ann an 1110 ann ann an 1110 ann ann an 1110 ann an 1110 ann an 1110 ann an 1110 ann |       |
| 10    | Chemisches Gleichgewicht                                                                                       | 190   |
| 10.1  | Richtung und Umkehrbarkeit einer Reaktion – Prinzip vom kleinsten Zwang                                        |       |
| 10.2  | Gleichgewicht zwischen Hin- und Rückreaktion                                                                   |       |
| 10.3  | Massenwirkungsgesetz                                                                                           |       |
| 10.4  | Berechnung der Gleichgewichtskonstante K <sub>c</sub>                                                          |       |
| 10.5  | Verallgemeinerung des Massenwirkungsgesetzes                                                                   |       |
| 10.6  | Bildung von lodwasserstoffsäure                                                                                |       |
| 10.7  | Beeinflussung von Gleichgewichten – Ausbeutesteigerung                                                         |       |
| 10.7  | Gleichgewichte in heterogenen Systemen                                                                         |       |
| 10.0  | Dissoziationskonstante von Elektrolyten                                                                        |       |
| 10.10 | Ionenprodukt des Wassers und pH-Wert                                                                           |       |
| 10.10 | pH-Messung                                                                                                     |       |
| 10.11 | Säure- und Basenkonstanten – pK <sub>S</sub> - und pK <sub>B</sub> -Werte                                      |       |
| 10.12 | Berechnung des pH-Wertes                                                                                       |       |
| 10.13 | Hydrolyse                                                                                                      |       |
|       | - 11   WI WI   WW                                                                                              |       |

| 10.15        | Löslichkeitsprodukt                                                          |     |
|--------------|------------------------------------------------------------------------------|-----|
| 10.16        | Puffer                                                                       |     |
| 10.17        | Neutralisation – Säure-Base-Titration                                        |     |
| 10.18        | Aufgaben zur Wiederholung von Kapitel 10                                     | 214 |
| 11           | Chemisch-technische Prozesse –                                               |     |
|              | Erzeugung von Grundchemikalien und Metallen                                  |     |
| 11.1         | Erzeugung von Schwefelsäure                                                  | 215 |
| 11.1.1       | Kontaktverfahren                                                             |     |
| 11.1.2       | Schwefeldioxid als Umweltgift                                                | 217 |
| 11.2         | Erzeugung von Ammoniak aus Luftstickstoff nach dem HABER-BOSCH-<br>Verfahren | 218 |
| 11.3         | Erzeugung von Salpetersäure                                                  |     |
| 11.3.1       | OSTWALD-Verfahren                                                            |     |
| 11.3.2       | Stickoxide als Umweltgifte                                                   |     |
| 11.4         | Erzeugung von Soda nach dem Solvay-Verfahren                                 |     |
| 11.5         | Chlor-Alkali-Elektrolyse                                                     |     |
| 11.5.1       | Wesen der Elektrolyse                                                        |     |
| 11.5.1       | Zersetzungsspannung                                                          |     |
| 11.5.2       | Erzeugung von Chlor und Natriumhydroxid im Diaphragma-Verfahren              |     |
| 11.5.4       | Erzeugung von Chlor und Natriumhydroxid im Amalgam-Verfahren                 |     |
| 11.5.4       | Gefahren bei der Realisierung der Chlor-Alkali-Elektrolyse                   |     |
|              |                                                                              |     |
| 11.6<br>11.7 | BOUDOUARDsches Gleichgewicht Gewinnung von Roheisen im Hochofenprozess       |     |
|              |                                                                              |     |
| 11.7.1       | Vorbehandlung der Eisenerze                                                  |     |
| 11.7.2       | Beschickung des Hochofens                                                    |     |
| 11.7.3       | Chemische Vorgänge im Hochofen                                               |     |
| 11.7.4       | Produkte des Hochofens                                                       | 236 |
| 11.7.5       | Weiterverarbeitung des Roheisens zu Stahl                                    |     |
| 11.8         | Gewinnung von Kupfer                                                         |     |
| 11.9         | Gewinnung von Aluminium durch Schmelzfluss-Elektrolyse                       |     |
| 11.10        | Überblick über die Gewinnung weiterer Metalle durch Redoxvorgänge            |     |
| 11.11        | Nebenprodukte und Produktionsabfälle                                         |     |
| 11.12        | Aufgaben zur Wiederholung von Kapitel 11                                     | 248 |
| 12           | Wasser                                                                       |     |
| 12.1         | Eigenschaften                                                                | 249 |
| 12.2         | Wasser als Lösungsmittel und Löslichkeit von Salzen                          |     |
| 12.3         | Vorgänge beim Lösen                                                          |     |
| 12.4         | Vorkommen und Bedeutung des Wassers                                          |     |
| 12.5         | Trinkwasser                                                                  |     |
| 12.6         | Aufbereitung des Trinkwassers                                                |     |
| 12.7         | Wasserhärte                                                                  |     |
| 12.8         | Enthärtung des Wassers                                                       |     |
| 12.9         | Abwasserbelastung und Abwasserbehandlung                                     |     |
| 12.10        | Wasser- und Bodenverseuchung durch Mülldeponien                              |     |
| 12.11        | Aufgaben zur Wiederholung von Kapitel 12                                     | 265 |
| 13           | Luft                                                                         |     |
| 13.1         | Bestandteile der Luft                                                        |     |
| 13.2         | Luftverflüssigung                                                            | 267 |
| 13.3         | Das natürliche CO <sub>2</sub> -O <sub>2</sub> -Gleichgewicht                | 267 |
| 13.4         | Kohlenstoffdioxid und Treibhauseffekt                                        |     |
| 13.5         | Ozon-Gleichgewicht und Ozonabbau                                             | 269 |

| 13.6    | Luftverunreinigung                                          | 272 |
|---------|-------------------------------------------------------------|-----|
| 13.6.1  | Schadstoffkonzentrationen – MAK- und MIK-Werte              |     |
| 13.6.2  | Luftschadstoffe und Smogbildung                             |     |
| 13.6.3  | Wirkungen und Reduzierung von Luftschadstoffen              |     |
| 13.7    | Aufgaben zur Wiederholung von Kapitel 13                    |     |
|         |                                                             |     |
| 14      | Allgemeine organische Chemie                                |     |
| 14.1    | Zum Begriff "Organische Chemie"                             |     |
| 14.2    | Bindungen des Kohlenstoffs mit einwertigen Elementen        |     |
| 14.3    | Bindungen zwischen Kohlenstoffatomen                        |     |
| 14.4    | Allgemeine Eigenschaften organischer Stoffe                 |     |
| 14.5    | Organische Reaktionen                                       | 285 |
|         |                                                             |     |
| 15      | Organische Verbindungen                                     |     |
| 15.1    | Aliphatische oder acyclische Kohlenwasserstoffe             |     |
| 15.1.1  | Alkane oder Paraffine                                       |     |
| 15.1.2  | Isomerie                                                    |     |
| 15.1.3  | Alkene oder Olefine                                         |     |
| 15.1.4  | Polyene                                                     |     |
| 15.1.5  | Alkine oder Acetylene                                       |     |
| 15.1.6  | Cycloalkane oder Naphthene                                  |     |
| 15.1.7  | Aufgaben zur Wiederholung von Kapitel 14 und Abschnitt 15.1 |     |
| 15.2    | Derivate aliphatischer Kohlenwasserstoffe                   |     |
| 15.2.1  | Chlorverbindungen der Kohlenwasserstoffe                    |     |
| 15.2.2  | Nitroalkane                                                 |     |
| 15.2.3  | Amine                                                       |     |
| 15.2.4  | Alkanole oder Alkohole                                      |     |
| 15.2.5  | Alkanale oder Aldehyde                                      |     |
| 15.2.6  | Alkanone oder Ketone                                        |     |
| 15.2.7  | Ether                                                       |     |
| 15.2.8  | Carbonsäuren                                                |     |
| 15.2.9  | Substituierte Carbonsäuren                                  |     |
| 15.2.10 | Derivate der Carbonsäuren                                   |     |
| 15.2.11 | Natürliche Fette und Öle – Fetthärtung und Fettspaltung     |     |
| 15.2.12 | Seifen und synthetische Waschmittel – Tenside               |     |
| 15.2.13 | Kohlenhydrate                                               |     |
| 15.2.14 | Eiweiße                                                     |     |
| 15.2.15 | Aufgaben zur Wiederholung von Abschnitt 15.2                |     |
| 15.3    | Aromatische Kohlenwasserstoffe (Arene)                      |     |
| 15.3.1  | Benzen (Benzol)                                             |     |
| 15.3.2  | Weitere aromatische Kohlenwasserstoffe                      |     |
| 15.3.3  | Einige Nomenklaturregeln für aromatische Verbindungen       |     |
| 15.3.4  | Einfachsubstituierung – elektrophile Substitution           |     |
| 15.3.5  | Mehrfachsubstitution                                        |     |
| 15.4    | Derivate aromatischer Kohlenwasserstoffe                    |     |
| 15.4.1  | Halogenderivate der Arene                                   |     |
| 15.4.2  | Aromatische Sulfonsäuren                                    | 347 |
| 15.4.3  | Phenole                                                     |     |
| 15.4.4  | Aromatische Alkohole                                        |     |
| 15.4.5  | Aromatische Aldehyde                                        |     |
| 15.4.6  | Aromatische Ketone                                          | 351 |
| 15.4.7  | Aromatische Carbonsäuren                                    |     |
| 15.4.8  | Aromatische Nitroverbindungen                               | 353 |
| 15.4.9  | Aromatische Amine                                           | 354 |

| 15.4.10      | Aromatische Diazoverbindungen                                                 |     |
|--------------|-------------------------------------------------------------------------------|-----|
| 15.4.11      | Farbstoffe                                                                    |     |
| 15.5         | Terpene und Steroide                                                          |     |
| 15.6<br>15.7 | Heterocyclische Verbindungen                                                  |     |
| 15.7         | Autgaben zur wiedernolung von Kapitel 15.3 bis 15.6                           | 301 |
| 16           | Erdgas, Erdöl und Kohle als Energieträger und Rohstoff                        |     |
| 16.1<br>16.2 | Entstehung                                                                    |     |
| 16.2         | Erdgas Erdöl                                                                  |     |
| 16.4         | Gewinnung von Kohlenwasserstoffen durch fraktionierte Destillation des Erdöls |     |
| 16.5         | Verunreinigung durch Mineralöle – Umweltprobleme                              |     |
| 16.6         | Weiterverarbeitung von Erdölfraktionen                                        |     |
| 16.6.1       | Raffination                                                                   |     |
| 16.6.2       | Erhöhung der Benzinausbeute durch Cracken ("Molekülverkleinerung")            |     |
| 16.6.3       | Qualitätsverbesserung der Benzine durch Reforming-Prozesse ("Molekülumbau")   |     |
| 16.6.4       | Verdichtbarkeit des Benzins – Octanzahl                                       |     |
| 16.7         | Kohle                                                                         |     |
| 16.7.1       | Kohle als Energieträger und Rohstoff                                          | 368 |
| 16.7.2       | Entgasung der Kohle (Verkokung)                                               |     |
| 16.7.3       | Vergasen der Kohle zu Synthesegas                                             |     |
| 16.8         | Aufgaben zur Wiederholung von Kapitel 16                                      | 371 |
| 17           | Kunststoffe                                                                   | 372 |
| 17.1         | Makromolekulare Stoffe – Definition und Einteilung                            | 372 |
| 17.2         | Ausgangsstoffe                                                                | 373 |
| 17.3         | Synthesereaktionen und Produkte                                               | 373 |
| 17.3.1       | Polymerisation und Polymerisate                                               | 373 |
| 17.3.2       | Bindungscharakter und sekundäre Bindungen der Polymerisate                    | 375 |
| 17.3.3       | Struktur der Polymerisate                                                     | 377 |
| 17.3.4       | Elastomere (Elaste)                                                           | 379 |
| 17.3.5       | Polykondensation und Polykondensate                                           |     |
| 17.3.6       | Polyaddition und Polyaddukte                                                  | 385 |
| 17.4         | Allgemeine Eigenschaften der Kunststoffe                                      |     |
| 17.5         | Chemiefasern                                                                  |     |
| 17.6         | Recycling von Kunststoffen                                                    |     |
| 17.7         | Aufgaben zur Wiederholung von Kapitel 17                                      | 390 |
|              | Anhang                                                                        |     |
| Α            | Einige Grundregeln für den Umgang mit Chemikalien im Labor                    |     |
| В            | Verhalten bei Notfällen und erste Hilfe                                       |     |
| С            | Gefahrenhinweise                                                              |     |
|              | Standardisierte Risiko-Sätze (R-Sätze)                                        |     |
|              | Sicherheitsratschläge (S-Sätze)                                               |     |
| D            | Gesetze und Verordnungen                                                      |     |
| E            | Gefahrstoffe                                                                  | 395 |
|              | Sachwortverzeichnis                                                           | 399 |
|              | Bildquellenverzeichnis                                                        | 404 |
|              | Periodensystem der Elemente (Ausschlagtafel) nach Seite                       | 404 |

#### Vorwort für die Lehrenden

Für das vorliegende Lehrbuch fanden die Rahmenlehrpläne für alle Berufe des Berufsfeldes Chemie, Physik, Biologie der Bundesländer Berücksichtigung. Der Inhalt ist auf alle Ausbildungsjahre abgestimmt. Stoffgruppen der organischen Chemie, die auf die aliphatischen Kohlenwasserstoffe folgen, sind im Überblick aufgenommen worden. Nur wenige Sachverhalte konnten aus Gründen des Umfangs nicht dargestellt werden, beispielsweise muss für Pharmazeutika auf spezielle Literatur hingewiesen werden. Das Lehrbuch enthält auch die chemischen Grundlagen, die in Fachschulen der Fachrichtungen Chemietechnik und Biotechnik vermittelt werden. Ebenso werden Schüler beruflicher Gymnasien entsprechender Orientierung in dem Buch ihre Lerninhalte auffinden können.

Es wurde eine Lehrstoffsystematik gewählt, die der Logik der Fachdisziplin folgt. Diese Entscheidung ergab sich schon daraus, dass die Rahmenlehrpläne sowohl, was die einzelnen Bundesländer als auch die Ausbildungsberufe des Berufsfeldes betrifft, in Auswahl und Anordnung nicht deckungsgleich sind. Die Autoren haben sich bemüht, die Darstellung so zu wählen, dass die Kapitel aufeinander abgestimmt und in sich geschlossen, aber auch in der Abfolge vertauschbar sind. Dadurch gibt es für den Lehrenden keine Einschränkungen, die eigene Unterrichtssystematik zu bestimmen. Ein solches Vorgehen war auch vom ökonomischen Standpunkt angeraten, denn es ist kaum vertretbar, für jeden einschlägigen Beruf gesonderte Lehrbücher zu schreiben und zu drucken, die zum größten Teil gleiche Inhalte aufweisen. Diese Entscheidung von Autoren und Verlag zieht allerdings nach sich, dass einige Abschnitte der jeweiligen Ausbildungsrichtung nur Ergänzungswissen, aber nicht Unterrichtsstoff enthalten. Diese Inhalte sind so abgefasst, dass keine Verständnislücken entstehen, wenn die Behandlung im Unterricht nicht erfolgt.

Breiter Raum wird den grundlegenden Zusammenhängen eingeräumt, die dem Verständnis von Erscheinungen dienen. Auch die Wiederholungsfragen zu den einzelnen Kapiteln lenken die Schüler auf Ursache-Wirkungs-Beziehungen. Die im Text enthaltenen Aufgaben sind in diesem Zusammenhang zu sehen.

Die Autoren haben es als wichtige Aufgabe angesehen, in angemessener Weise auf Umweltprobleme einzugehen, haben doch gerade Umweltschäden meist chemische Ursachen.

Grundsätzlich sollte die Vermittlung chemischer Sachverhalte zu kritischer Haltung im Umgang mit Substanzen, die Gefahren darstellen, erziehen.

Die Autoren danken dem Verlag für die Unterstützung. Sie sind über kritische Hinweise, die einer Bearbeitung bei einer Neuauflage dienlich wären, erfreut.

Die Verfasser

#### **Vorwort zur 2. Auflage**

Autoren und Verlag danken für die Hinweise, die zur Verbesserung der 2. Auflage angeregt haben. Wir verweisen vor allem auf die Erweiterungen der Kapitel "Energieänderungen" und "Weitere organische Verbindungen". Beim "Massenwirkungsgesetz" und bei den "Nichtmetallen" wurden heterogene Systeme, Ausbeutesteigerungen sowie LEWIS-Säuren und -Basen neu aufgenommen.

Die Autoren

#### Vorbemerkungen für die Auszubildenden

Vorworte von Lehrbüchern sind aus unerfindlichen Gründen meist für die Lehrer geschrieben. Lehrbücher sind jedoch für Sie, die Lernenden, verfasst! Also wollen die Autoren die "Tradition" brechen und sich auch an Sie wenden.

Im Chemieunterricht wird man leicht von der großen Vielfalt der Einzelheiten überwältigt, wenn es nicht gelingt, zu allgemein gültigen, vergleichbaren wiederkehrenden Zusammenhängen vorzudringen. Deshalb sollten Sie sich auf die Gesetzmäßigkeiten konzentrieren und die einzelne Erscheinung als speziellen Fall verstehen. Die hervorgehobenen Merksätze sollen Ihnen dabei behilflich sein. Auch die im Text und am Kapitelende eingefügten Aufgaben orientieren auf die Zusammenhänge von Ursache und Wirkung und weisen auf besonders wichtige Lerninhalte hin. Erst das Erkennen der Ursachen führt zum Verständnis des chemischen Sachverhaltes. Fragen Sie deshalb immer nach dem Warum!

Die chemischen Prozesse gehen immer am unendlich kleinen Stoffteilchen vor sich. Sie sind uns nicht direkt zugänglich. Deshalb können sich Lernende oft nicht vorstellen, wie sich Atome, lonen oder Moleküle verändern. Um eine gewisse Anschaulichkeit zu erhalten, stehen Ihnen Modelle zur Verfügung. Beachten Sie, dass es Denkhilfen sind. Die Wirklichkeit ist viel komplizierter. Schon aus diesem Grunde braucht man zur Aufklärung besonders komplizierter Dinge und Prozesse mehrere Modelle, abgesehen davon, dass man nur modellieren kann, wenn man von dem betreffenden Sachverhalt etwas weiß.

Und schließlich noch etwas Wichtiges: So, wie ohne Zahlen keine Berechnungen ausgeführt werden können, so ist chemisches Denken und Handeln ohne wichtige Formeln und Gleichungen nicht möglich.

Autoren und Ihre Lehrer wollen Vermittler, "Katalysator" zwischen der Wissenschaft Chemie und Ihnen sein, damit Sie sich das Wissen aneignen können, das Sie für Ihre spätere Berufstätigkeit benötigen. Wir wünschen Ihnen Erfolg!

Die Verfasser

# **Einleitung**

Gegenstand der Wissenschaft Chemie sind die Stoffe. Alle festen Körper, Flüssigkeiten, Gase, auch der menschliche Körper selbst bestehen aus Stoffen. Man kann sagen, dass es der Mensch während seines gesamten Lebens – bewusst oder unbewusst – mit Erscheinungen zu tun hat, die durch die Wissenschaft Chemie erforscht werden. Die Aufnahme von Nährstoffen sichert den Ablauf der körpereigenen Prozesse. Die Menschen gewinnen Rohstoffe aus Naturstoffen und wandeln diese zu neuen Materialien, aus denen schließlich die vielfältigsten Gegenstände für alle Bereiche des Lebens (Haushalt, Freizeit, Industrie usw.) hergestellt werden. Ganz gleich, ob es der zum Faustkeil gestaltete Feuerstein, die Bronzesichel, die "eiserne" Bahn, das wirksame Medikament, der in raffinierten Strukturen erdachte Mikrochip ist, in jedem Fall werden die Eigenschaften bestimmter Stoffe vom Menschen genutzt. Die Entwicklung der menschlichen Zivilisation ist eng verbunden mit der Weiter- und Neuentwicklung von Stoffen. Es darf aber nicht übersehen werden, dass neben vielen positiven Wirkungen auch negative Einflüsse auf Mensch und Natur mit der Erzeugung und dem Einsatz von Stoffen verbunden sind. Kenntnisse der Chemie sind für den Menschen daher in mehrfacher Hinsicht bedeutungsvoll: Sie versetzen ihn einerseits in die Lage, Stoffe zu bewerten, auszuwählen, deren Eigenschaften zweckvoll zu nutzen und zu verändern. Andererseits liefern sie ihm auch das Rüstzeug, um "chemische Sünden" zu vermeiden, die unsere Umwelt schädigen. Der letztere Aspekt nimmt mit dem Umfang der genutzten Stoffe an Bedeutung zu. Es ist unerlässlich, die Schadstoffbildung einzuschränken, anfallende Schadstoffe in unschädliche Formen zu überführen und Altstoffe einer Wiederverwertung zugänglich zu machen.

# 1 Chemie und Physik

## 1.1 Arbeitsgebiete der Chemie und der Physik

Chemie und Physik sind exakte Naturwissenschaften, deren Interessen sich auf gleiche natürliche Erscheinungen in der Umwelt des Menschen richten. Daraus ergibt sich, dass die Arbeitsgebiete beider Wissenschaften nicht scharf abgrenzbar sind und eine Definition des Wissenschaftsgegenstandes immer "Unschärfen" enthält.

# 1.2 Physik und physikalischer Vorgang

Die Physik beschäftigt sich vorrangig mit Zustandsänderungen von Stoffen, bei denen die Stoffzusammensetzung erhalten bleibt. Zustandsänderungen vollziehen sich unter Einwirkung von Energie. Sie äußern sich beispielsweise in Änderungen des **Aggregatzustandes** (fest, flüssig, gasförmig). Deshalb wird die Physik auch als Wissenschaft von der Energie und deren Umwandlungen bezeichnet.

Physik und Chemie untersuchen den Aufbau und das Verhalten der unbelebten Natur. Die Unterschiede beider Wissenschaftsgebiete zeigen sich, wenn man den physikalischen und den chemischen Vorgang kennzeichnet:

Physikalische Vorgänge äußern sich in Zustands- bzw. Energieänderungen. Dabei treten keine bleibenden stofflichen Veränderungen ein.

**Aufgabe:** Beobachten Sie Wetterabläufe, die Bewegungen auf einer Straße, Vorgänge im Haushalt u. a. und nennen Sie Prozesse, die ohne Stoffänderungen vor sich gehen.

# 1.3 Änderungen des Aggregatzustandes als Beispiel für physikalische Vorgänge

Für die meisten festen Stoffe gilt, dass sie durch Energiezufuhr, d. h. durch Erwärmen geschmolzen und verdampft werden können. Dazu muss am **Schmelzpunkt (-temperatur)** die **Schmelzwärme** und am **Siedepunkt (-temperatur)** die **Verdampfungswärme** aufgebracht werden. Die Änderungen des Wassers beim Erwärmen lassen sich wie folgt formulieren:

Die zum Schmelzen bzw. zum Verdampfen von jeweils einem Gramm Eis bzw. Wasser benötigten Wärmemengen werden als **spezifische Schmelz-** bzw. **spezifische Verdampfungswärme** bezeichnet.

Bei der Abkühlung von Wasserdampf unter die **Kondensationstemperatur**, die bei gleichem Druck der Siedetemperatur entspricht, kondensiert er wieder zu flüssigem Wasser. Ebenso erstarrt das Wasser beim Unterschreiten der **Kristallisations- oder Erstarrungstemperatur**, die bei gleichem Druck der Schmelztemperatur entspricht. Die zum Schmelzen bzw. Verdampfen notwendigen Wärmemengen werden bei der Abkühlung wieder als **Kondensations-** bzw. als **Erstarrungs- oder Kristallisationswärme** frei. Die Beträge sind gleich groß. Darin äußert sich das **Gesetz von der Erhaltung der Energie.** Zugeführte Wärmemengen erhalten ein positives (Energiezuwachs), abgegebene Wärmemengen erhalten ein negatives Vorzeichen (Energieverlust).

Die Gleichungen für die Vorgänge lauten somit:

Die Vorgänge beim Erwärmen und beim Abkühlen von Wasser verlaufen unter gleichen Bedingungen reversibel (umkehrbar, ohne bleibende Veränderung).

Alle Stoffe, die bis über die Schmelz- bzw. Verdampfungstemperatur thermisch stabil sind, d. h. sich nicht zersetzen, zeigen solch reversible Änderungen des Aggregatzustandes (Abb. 1-1).

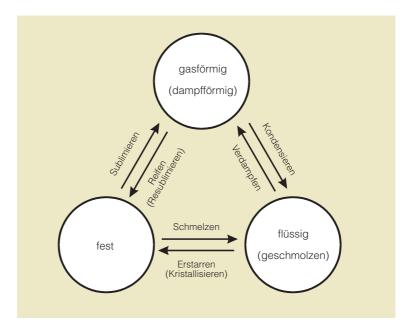
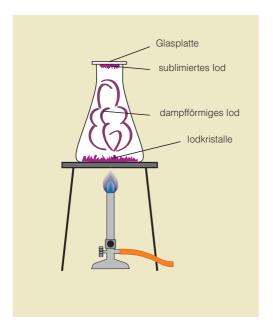




Abb. 1-1 Mögliche Übergänge zwischen den Zustandsformen eines Stoffes

Aggregatzustände können auch "übersprungen" werden. Aus Schwefeldampf bildet sich beim Abkühlen fester Schwefel ("Schwefelblüte"). Bei Temperaturen unterhalb des Gefrierpunktes und hoher Luftfeuchtigkeit kann der Übergang von Wasserdampf in Eis beobachtet werden (Reifen). Bei manchen Stoffen und bei niedrigem Druck sind auch Änderungen vom festen in den dampfförmigen Zustand möglich (Sublimation, Abb. 1-2).



Beispiele dafür sind das Verdampfen von Eis oder das zum Verspiegeln genutzte Verdampfen von Aluminium im Vakuum.

Abb. 1-2 Sublimation und Reifen (Resublimieren) von Iod



Abb. 1-3 zeigt die Möglichkeiten der Änderung von Aggregatzuständen am Beispiel des Wassers. Der Übersicht 1-1 sind für einige technisch bedeutsame Metalle Schmelz- und Siedetemperaturen sowie die spezifischen Wärmemengen zu entnehmen.

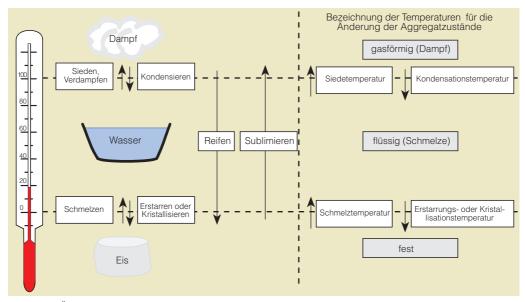



Abb. 1-3 Änderungen des Aggregatzustandes am Beispiel von Wasserstoffoxid H<sub>2</sub>O (bei p = 101,325 kPa)

| Physikalische Konstanten von Metallen |                        |                                                       |                      |                                                         |
|---------------------------------------|------------------------|-------------------------------------------------------|----------------------|---------------------------------------------------------|
| Stoff                                 | Schmelz-<br>temperatur | spezifische Schmelz-<br>bzw.<br>Kristallisationswärme | Siede-<br>temperatur | spezifische<br>Verdampfungs- bzw.<br>Kondensationswärme |
|                                       | in °C                  | in kJ · g <sup>-1</sup>                               | in °C                | in kJ · g <sup>-1</sup>                                 |
| Na                                    | 97,7                   | 0,115                                                 | 881                  | 4,48                                                    |
| Al                                    | 660,2                  | 0,418                                                 | ~2330                | 10,48                                                   |
| Cu                                    | 1083                   | 0,204                                                 | ~2595                | 4,87                                                    |
| Fe                                    | 1539                   | 0,278                                                 | ~3070                | 6,338                                                   |
| W                                     | 3410                   | 0,192                                                 | ~5700                | 4,346                                                   |

Übersicht 1-1

**Aufgabe:** Stellen Sie für die Änderungen der Aggregatzustände beim Erwärmen und Abkühlen von Aluminium Gleichungen auf, wie das für Wasser geschehen ist.

Bei allen genannten Vorgängen ändert sich die Zusammensetzung der Stoffe nicht. Wasser ist in allen Aggregatzuständen die gleiche Verbindung  $H_2O$ . Der Stoff und seine Eigenschaften bleiben bei physikalischen Vorgängen erhalten. Zu den physikalischen Eigenschaften (Merkmalen) eines Stoffes zählt man: Schmelz- und Siedetemperatur, Dichte, Aggregatzustände in Abhängigkeit von Druck und Temperatur, elektrische und Wärmeleitfähigkeit, magnetisches Verhalten, Härte und Festigkeit.

#### 1.4 Chemie und chemischer Vorgang

Die Chemie ist die Wissenschaft von den Stoffen und den stofflichen Veränderungen, die sich bei chemischen Vorgängen einstellen. Sie erforscht den Aufbau (Struktur), die Zusammensetzung (Bestandteile), die Eigenschaften und die Darstellung (Herstellung, Erzeugung) von Stoffen. Im Zentrum chemischer Untersuchungen stehen die chemischen Vorgänge sowie die Bedingungen und Gesetzmäßigkeiten, nach denen sich diese Prozesse vollziehen.

Chemische Vorgänge können in vielfältiger Form ablaufen, wie die folgenden Beispiele zeigen:

a) aus Elementen entstehen Verbindungen, z. B. bei der Verbrennung von Magnesium:

b) Verbindungen wandeln sich in andere Verbindungen um, z. B. beim Abbinden von Kalkmörtel:

 $Ca(OH)_2$  +  $CO_2$   $\rightarrow$   $CaCO_3$  +  $H_2O$ Löschkalk Kohlenstoffdioxid carbonat Wasser

c) Verbindungen zerfallen in Elemente, z. B. beim Erhitzen von Quecksilberoxid:

d) Verbindungen gehen in einfachere Verbindungen über, z. B. beim Erhitzen von Kalkstein oder Ammoniumchlorid (thermische Zerlegung):

 $NH_4CI \rightarrow NH_3 + HCI$ 

Ammonium- Ammoniak Chlorwasserstoff Chlorid Hydrogenchlorid



 Ein kleines Stück Magnesiumband wird mit der Tiegelzange in die heiße Bunsenbrennerflamme gehalten und entzündet. Beschreiben Sie den Prozess und das Produkt! Vorsicht! (Abb. 1-4) Schutzbrille! Cobaltglas!

R 7, S 30

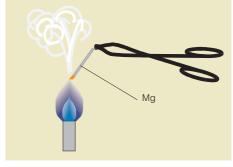



Abb. 1-4



 Auf trockenen Löschkalk (Calciumhydroxid), der sich in einem Reagenzglas oder Erlenmeyerkolben befindet, wird trockenes Kohlenstoffdioxid geleitet. Beobachtungen? (Abb. 1-5) R 34, S 24/26

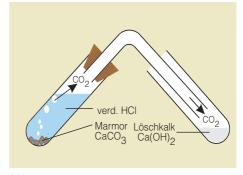



Abb. 1-5



Sehr giftig

#### Lehrerversuch

 Eine Spatelspitze Quecksilberoxid wird in einem Reagenzglas stark erhitzt. Beobachtung? Halten Sie in die Öffnung des Reagenzglases einen glühenden Holzspan. Beobachtung? (Das benutzte Reagenzglas ist Sondermüll!) (Abb. 1-6) Abzug! R 26/28, S 60

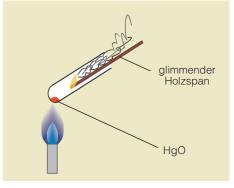



Abb. 1-6

Die Gleichungen zu den Versuchen bringen zum Ausdruck, dass sich die Stoff- bzw. Teilchenart in jedem Fall ändert.

Den Aufbau neuer Verbindungen aus einfachen Stoffen bezeichnet man als **Synthese** (Beispiel a), die Zerlegung einer Verbindung in weniger kompliziert zusammengesetzte Stoffe als **Analyse** (Beispiel c).

Alle Prozesse, bei denen sich ein oder mehrere Ausgangsstoffe in andere Stoffe (Reaktionsprodukte) mit neuen Eigenschaften umwandeln, sind chemische Vorgänge (chemische Reaktionen, chemische Prozesse). Die Ausgangsstoffe nennt man Edukte, die Endstoffe Produkte.

Aufgabe: Welche Vorgänge im Verbrennungsmotor sind physikalische bzw. chemische

Prozesse?

| Edukte                   | chemische Reaktion | Produkte                   |
|--------------------------|--------------------|----------------------------|
| Eigenschaften der Edukte |                    | Eigenschaften der Produkte |

## 1.5 Chemische Eigenschaften

Chemische Eigenschaften sind Reaktionsmerkmale, die ein Stoff besitzt und durch die er sich von anderen Stoffen unterscheidet.

Diese Merkmale können äußerlich erkennbar, sinnlich wahrnehmbar sein (Geruch, Aussehen wie Farbe, Glanz usw.). Weitaus häufiger äußern sich die chemischen Eigenschaften erst beim Ablauf chemischer Vorgänge, z. B. beim Verbrennen, bei der Reaktion mit Säuren oder anderen Stoffen usw.

Eigenschaften müssen auch herangezogen werden, um Stoffe zu identifizieren. Der salmiakartige Geruch von Ammoniak charakterisiert den Stoff der Zusammensetzung NH<sub>3</sub>. Der stechend säuerliche Geruch von Chlorwasserstoff (Salzsäure-Gas) ist kennzeichnend für HCl, reicht jedoch allein nicht für die Identifizierung aus, da der Geruch des ebenfalls farblosen Schwefeldioxids sehr ähnlich ist. Erst die Untersuchung weiterer Eigenschaften, wie z. B. das Verhalten des Gases in Gegenwart von Wasserdampf, können die Vermutungen bestätigen. Im Falle von Salzsäure-Gas bilden sich auf Grund der wasseranziehenden Eigenschaft oder **Hygroskopie** des Gases sogenannte "Salzsäurenebel". Auch die Farbe allein genügt als Merkmal nicht für eine Identifizierung. Beispielsweise zeigen sowohl Gold, einige Messinge (Kupfer-Zink-Legierungen) als auch Verschleißschutzschichten aus Titannitrid Goldfarbe. Erst das Verhalten der Stoffe bei chemischen Vorgängen lässt die Unterscheidung zu: Gold (-legierungen) wird von konzentrierter Salpetersäure nicht angegriffen, wohl aber Messing. Titannitrid wird von konzentrierter heißer Kalilauge KOH chemisch zu Ammoniak NH<sub>3</sub> umgewandelt. Gold lässt sich nur durch ein

Gemisch aus 3 Teilen konzentrierter Salzsäure und 1 Teil konzentrierter Salpetersäure (Königswasser) chemisch auflösen (Abb. 1-7).

#### Um welchen Stoff handelt es sich?



- + HNO<sub>3, konz.</sub>
  - keine Reaktion
  - ... Gold oder Titannitrid
- + HNO<sub>3, konz.</sub>
  - → braune Dämpfe (NO₂) und blaue Lösung
  - ... Messing
- + heiße KOH, konz.
  - → NH<sub>3</sub>-Geruch
  - ... Titannitrid
- + 3 Teile HCl, konz. + 1 Teil HNO<sub>3, konz.</sub>
  - braune Lösung
  - ... Gold

Abb. 1-7 Unterscheidung von gleichartig aussehenden Stoffen (a = Gold, b = Titannitrid, c = Messing) auf Grund unterschiedlicher chemischer Eigenschaften

Chemische Eigenschaften geben somit auch an, wie sich ein Stoff verhält, wenn andere Stoffe oder/und Energie in Form von Wärme, Licht, radioaktiver Strahlung o. a. auf ihn einwirken. Wenn sich beispielsweise ein Metall an der Luft mit Sauerstoff verbindet, so ist es oxidierbar bzw. nicht oxidationsbeständig (korrodierbar oder nicht korrosionsbeständig). Reagiert ein Metall mit einer Säure unter Wasserstoffentwicklung, so ist es nicht säurebeständig oder säurelöslich.

# 1.6 Änderung von Eigenschaften als Merkmale eines chemischen Vorgangs

Allgemein ergibt sich aus einer Veränderung von Stoffeigenschaften, dass ein chemischer Vorgang abgelaufen ist. Verschiedene Begleiterscheinungen deuten auf eine Reaktion hin, z. B.

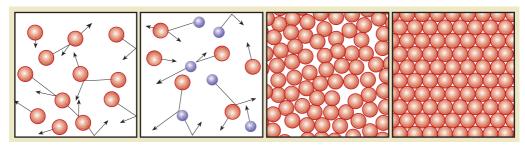
- Entstehung eines Niederschlags (Veränderung der Löslichkeit)
- Farbänderung, Änderung des Glanzes (Reflexion)
- Veränderung von Schmelz- und Siedetemperatur (Erstarrungs- und Kondensationstemperatur)
- Veränderung der Dichte
- Geruchs- und Geschmacksänderung (Vorsicht!)
- Entweichen eines Gases
- Änderung der Kristallform
- Veränderung von Härte, Festigkeit, Sprödigkeit, Wärmeleitfähigkeit, elektrischer Leitfähigkeit
- Freisetzen von Wärmeenergie oder Aufnahme (Binden) von Wärmeenergie

# 2 Stoffe

# 2.1 Einteilung der Stoffe nach Vorkommen und Verwendung

In der Natur vorgefundene Stoffe nennt man **Naturstoffe.** Werden sie vom Menschen für einen bestimmten Zweck gewonnen, bezeichnet man sie als **Rohstoffe.** Durch die weitere Verarbeitung erzeugt man aus den Rohstoffen beispielsweise **Werkstoffe** (Materialien), **Lebensmittel** (Nahrungs- und Genussmittel), Kosmetika, Pharmazeutika, **Betriebsstoffe** zur Gewinnung und Übertragung von Energie und **Hilfsstoffe** (Übersicht 2-1).




Übersicht 2-1

Allen gasförmigen, flüssigen und festen Stoffen ist gemeinsam, dass sie aus Teilchen bestehen. Je nach Stoffart sind es Atome, Ionen oder Moleküle. Zwischen den Teilchen bestehen anziehende und abstoßende Kräfte.

## 2.2 Aggregatzustände von Stoffen

#### 2.2.1 Gase

Gasteilchen sind frei beweglich. Ihre Abstände zueinander sind so groß, dass keine oder nur geringe Anziehungskräfte wirken können. Gase nehmen deshalb ein großes Volumen ein und sie sind komprimierbar. Sie füllen ein verfügbares Volumen vollständig aus (Abb. 2-1). Beim Zusammentreffen reflektieren die Teilchen elastisch. Stöße auf eine Wand erzeugen den Gasdruck (BROWNsche Molekularbewegung).



Raumausfüllung durch Teilchen ...

Abb. 2-1 Abb. 2-2

... in Gasen ... in Gasgemischen

Abb. 2-3

... in Flüssigkeiten

Abb. 2-4

... in festen Stoffen

Druck und Volumen der Gase ändern sich mit der Temperatur. GAY-LUSSAC (1778–1850) fand dafür folgende zwei Zusammenhänge:

1. Das Volumen eines Gases dehnt sich bei einer Erwärmung um 1 Kelvin um den  $\frac{1}{273,16}$  Teil seines Volumens bei 0 °C aus, wenn der Druck konstant (isobar) bleibt:

$$V_{\vartheta} = V_0 (1 + \alpha \vartheta) = V_0 \left( 1 + \frac{\vartheta}{273.16} \right)$$
 (p = konst.)

 $\vartheta$  Temperatur in °C;  $V_0$  Volumen bei 0 °C;  $V_{\vartheta}$  Volumen bei der Temperatur  $\vartheta$ ;  $\alpha$  thermischer Ausdehnungskoeffizient der Gase  $\alpha = \frac{1}{273.16}$  in K<sup>-1</sup> (bzw. bei  $\vartheta$  in grd<sup>-1</sup>).

Mit 273,16 +  $\vartheta = T$  (in K) erhält man bei der absoluten Temperatur T für das Volumen  $V_T$ 

$$V_{\rm T} = V_0 \left( \frac{273,16 + \vartheta}{273,16} \right)$$

$$V_{\rm T} = V_0 \frac{T}{273,16}$$
 (p = konst.)

**Aufgabe:** Ein Kubikmeter eines Gases wird von 0°C auf 200°C isobar erwärmt. Welches Volumen nimmt das Gas nun ein?

Mit Erhöhung der Temperatur nimmt die Teilchenbewegung (Geschwindigkeit) zu. Bleibt das Gas im gleichen Volumen eingeschlossen (V = konst., isochor), erhöht sich der Druck in analoger Weise:

$$p_{\theta} = p_0 (1 + \alpha \vartheta) = p_0 (1 + \frac{\vartheta}{273.16})$$
 (V = konst.)