Statik insbesondere Schnittprinzip

Statik

insbesondere Schnittprinzip

von Gerhard Knappstein

4. Auflage

VERLAG EUROPA-LEHRMITTEL · Nourney, Vollmer GmbH & Co. KG Düsselberger Straße 23 · 42781 Haan-Gruiten

Europa-Nr.: 56504

Der Autor

Dipl.-Ing. Gerhard Knappstein war nach seiner Ausbildung zum Werkzeugmacher und dem Maschinenbaustudium als Konstrukteur und Berechnungsingenieur in der Industrie tätig. Er ist Mitarbeiter im Fachbereich Maschinenbau – Fachgebiet Technische Mechanik – an der Universität Siegen.

4. Auflage 2011 Druck 5 4 3 2

ISBN 978-3-8085-5650-4

Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Jede Verwertung außerhalb der gesetzlich geregelten Fälle muss vom Verlag schriftlich genehmigt werden.

Der Inhalt des Werkes wurde sorgfältig erarbeitet. Dennoch übernehmen Autor und Verlag für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler keine Haftung.

© 2014 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten http://www.europa-lehrmittel.de

Umschlaggestaltung: braunwerbeagentur, 42477 Radevormwald

Druck: Medienhaus Plump, 53619 Rheinbreitbach

Vorwort

Das Buch wendet sich in erster Linie an Studierende in den Anfangssemestern technischer Fachrichtungen an Fachhochschulen und Universitäten. Es entspricht dem Lehrstoff des Teilgebiets *Statik starrer Körper* im Grundlagenfach Technische Mechanik.

In der vorliegenden Auflage wird das Schnittprinzip (Schnittmethode oder Schnittverfahren) weiterhin besonders ausführlich behandelt, weil ihm in der Technischen Mechanik eine grundlegende Bedeutung zukommt.

Besondere Aufmerksamkeit habe ich den Zeichnungen gewidmet, da Studierende dadurch viel schneller und besser über schwierigere Sachverhalte "im Bilde" sind, als das je mit Text geschehen könnte.

Beobachten kann man immer wieder bei den Studierenden, welch große Schwierigkeiten sie beim Lösen von Mechanikaufgaben haben, obwohl sie glauben, die - oft einfachen - Gesetzmäßigkeiten der Mechanik vollkommen verstanden zu haben. Um hier zu mehr Verständnis beizutragen, wird die vorgetragene Theorie zusätzlich mit vielen ausführlich gelösten Beispielen verständlich gemacht.

Zum Erreichen eines optimalen Lernerfolgs, sollte sich der Lernende die Mühe machen, mit Bleistift und Papier die Beispiele und Aufgaben durchzuarbeiten. Der Übende kann testen, ob er in der Lage ist, ein Problem selbständig zu lösen. Unbedingt erforderlich ist, dass Aufgabenlösungen – nicht nach "Schema F", sondern mit Verstand und den Grundgesetzen der Mechanik – durchzuführen sind. Hilfreich ist oft, die Beispiele und Aufgaben zu zweit oder zu dritt durchzuarbeiten, zu vergleichen und die Lösungen zu diskutieren.

Da oft viele Studienanfänger den Weg von der Problemstellung zur Lösung verlieren, wenn man ihn nicht systematisch anlegt, wird ergänzend die "Technik des Aufgabenlösens" in einem eigenen Kapitel behandelt. Weiterhin werden Leitlinien zum Lösen von Mechanik-Aufgaben als grundsätzliches Lösungsverfahren angegeben. Im Anhang werden die Grundbegriffe der Vektorrechnung erläutert.

Die vorliegende 4. Auflage wurde durch den neuen Abschnitt "Arbeit, Potential, Prinzip der virtuellen Verrückungen, Stabilität einer Gleichgewichtslage" ergänzt. Außerdem habe ich das Kapitel "Aufgaben mit ausführlichen Lösungen" neu gestaltet und auf 114 Aufgaben erweitert, eine Reihe von Ergänzungen eingearbeitet sowie im Anhang eine Zusammenstellung der Grundlagen (Formelsammlung) aufgenommen.

Mein Dank gilt Frau Nicole Dröge für die Mitarbeit bei der Umsetzung der Texte und Bilder der neuen Aufgaben in eine elektronische Form. Dem Verlag Harri Deutsch danke ich für die gute Zusammenarbeit.

Inhaltsverzeichnis

0	Einle	eitung	1
1	Grui	ndbegriffe	3
	1.1	Begriffserklärung "Statik starrer Körper"	3
	1.2	Kräfte und Kräftearten	3
	1.3	Streckenlasten	4
	1.4	Was ist ein mechanisches System	5
	1.5	Einteilung der Kräfte	6
	1.6	Aufgabe der Statik	7
	1.7	Modellbildung, Ersatzsystem, Idealisierung	8
	1.8	Rechnerische Bearbeitung von Gleichgewichtsproblemen	8
	1.9	Lagerungen	9
		1.9.1 Lagerungen in der Ebene	9
		1.9.2 Lagerungen im Raum	10
		1.9.3 Verbindungselement zwischen zwei Körpern in der Ebene	11
	1.10	Abgrenzen (Aufteilen) eines mechanischen Systems	12
	1.11	Das Freimachen	12
		1.11.1 Beispiele zum Freimachen	16
	1.12	Erstarrungsmethode	20
	1.13	Axiome der Statik	21
		1.13.1 Das Gleichgewichtsaxiom	21
		1.13.2 Das Reaktionsaxiom (Wechselwirkungsgesetz)	21
		1.13.3 Das Axiom von der Verschiebbarkeit einer Kraft auf ihrer Wirkungslinie	22
		1.13.4 Das Axiom vom Kräfteparallelogramm	22
	1.14	Schnittprinzip (Schnittmethode oder Schnittverfahren)	22
	1 15	Fragen und Antworten	26

2	Krä	fte mit	einem gemeinsamen Angriffspunkt (zentrales Kräftesystem)	29
	2.1	Zusan	nmensetzung und Zerlegen von Kräften in der Ebene, Komponentendarstellung.	29
		2.1.1	Beispiel	30
	2.2	Gleich	ngewicht in der Ebene	32
		2.2.1 2.2.2	Drei nichtparallele Kräfte im Gleichgewicht Beispiele	32 33
	2.3 2.4		liches zentrales Kräftesystemn und Antworten	36 39
3	Allg	emeine	s Kräftesystem	41
	3.1	Allge	meines Kräftesystem in der Ebene	41
		3.1.1 3.1.2	Kräftepaar und Moment des Kräftepaares	41
		3.1.3 3.1.4	Resultierende und resultierendes Moment ebener Kraftsysteme	44 46
			3.1.4.1 Beispiele	48
		3.1.5	Gleichgewicht bei vier Kräften in der Ebene (Verfahren nach Culmann)	51
			3.1.5.1 Beispiel	51
	3.2	Allge	meines Kräftesystem im Raum	52
		3.2.1 3.2.2 3.2.3	Moment einer Kraft (Momentenvektor) Gleichgewichtsbedingungen Beispiele	52 53 54
	3.3	Frage	n und Antworten	58
4	Schi	nittprin	zip beim Lager sowie beim Gelenk	59
	4.1	Eintei	lige ebene Tragwerke	60
		4.1.1	Statische Bestimmtheit	60
		4.1.2	Beispiele	61

	4.2	Mehrte	eilige ebene Tragwerke	63
		4.2.1	Statische Bestimmtheit	63
		4.2.2	Beispiele	64
	4.3	Räuml	iche Tragwerke	69
		4.3.1	Beispiel	69
	4.4	Frager	und Antworten	72
5	Schr	nittprin	zip bei Seil, Kette und beim Stab für ebene Kraftsysteme	73
	5.1	Seil ur	nd Kette	73
		5.1.1	Beispiele	74
	5.2	Stab, e	benes Fachwerk	75
		5.2.1	Statische Bestimmtheit beim Fachwerk	76
		5.2.2	Aufbau eines Fachwerks	77
		5.2.3	Ermittlung der Stabkräfte	78
			5.2.3.1 Knotenpunktverfahren	78
			5.2.3.2 RITTERsches Schnittverfahren	79
			5.2.3.3 Nullstäbe erkennen	85
	5.3	Fragen	und Antworten	86
6	Schr	nittprin	zip bei Balken, Rahmen, Bogen und bei räumlich belasteten Tragwerken	87
	6.1	Schnit	tgrößen am Balken	87
		6.1.1	Beispiel	88
		6.1.2	Differentielle Zusammenhänge zwischen Belastung und Schnittgrößen	93
		6.1.3	Wichtige Aussagen zu den Schnittgrößen Q und M	94
		6.1.4	Beispiele	95
		6.1.5	Punktweise Ermittlung der Schnittgrößen	105
		6.1.6	Übersichtstabellen zu den Schnittgrößen Q und M in Abhängigkeit von Belastung, Lagerung und Verbindungsart	108
	6.2	Schnit	tgrößen beim Rahmen	109
		c 0 1		110
		6.2.1	Beispiel	110

	6.3	Schnittgrößen beim Bogen	
	6.4	Schnittgrößen bei räumlich belasteten Tragwerken	118 118
	6.5	Fragen und Antworten	122
7	Der	Schwerpunkt	125
	7.1	Massen- bzw. Gewichtsschwerpunkt	125 126
	7.2	Volumenschwerpunkt	128 128
	7.3	Flächenschwerpunkt	129 130
	7.4	Linienschwerpunkt	131 131
	7.5	Tabellen mit Schwerpunktkoordinaten	132
	7.6	Regeln von Pappus und Guldin bei Rotationskörpern	134
		7.6.2 Volumenberechnung von drehsymmetrischen Körpern	135 135
	7.7	Fragen und Antworten	136
8	Haft	ung und Reibung	137
	8.1	COULOMBsches Reibungsgesetz	137
		8.1.1 Beispiele	139
	8.2 8.3 8.4	Haftung und Reibung an Schrauben Reibung am Keil Seilhaftung und Seilreibung. 8.4.1 Beispiel	144 146 147
	8.5 8.6	Rollwiderstand (rollende Reibung)	148 150

9	Das l	biegeschlaffe Seil	151
	9.1	Seil mit beliebigem Durchhang	151
	9.2	Seil mit geringem Durchhang	153
	9.3	Beispiel	153
	9.4	Fragen und Antworten	156
10	Stan	dsicherheit	157
	10.1	Definition der Standsicherheit	157
		Beispiele	157
		•	
11	Arbe	it	161
	11.1	Arbeit einer Kraft, Potential	161
	11.2	Prinzip der virtuellen Verrückungen	163
	11.3	Ermittlung von Schnitt- und Reaktionskräften	166
	11.4	Stabilität einer Gleichgewichtslage	166
	11.5	Beispiele	167
A	nhang		181
	A 1	Zeichenvereinbarungen	182
	A2	Rechtwinkliges Rechts-Koordinatensystem	182
	A3	Einige Grundbegriffe der Vektorrechnung	
		(mit Beispiel: Räumlich belastetes mechanisches System)	182
		- Skalare	182
		- Vektoren	183
		- Gleichheit von Vektoren	183
		- Multiplikation eines Vektors mit einem Skalar	183
		- Addition und Subtraktion von Vektoren	184
		- Einheitsvektor	184
		- Vektoren im rechtwinkligen Koordinatensystem	185
		- Skalarprodukt	185
		- Vektorprodukt (Kreuzprodukt)	186
		- Beispiel: Räumlich belastetes mechanisches System	188
	A4	Cremona-Plan	192
	A5	Anschauungsmodelle zum Schnittprinzip	
	AJ	- Schaumgummi-Balken mit biegesteifem Stoß	192
		- Balken auf zwei Stützen mit drei herausnehmbaren Stäben	193
		- Fachwerk	195
	A6	Zur Technik des Aufgabenlösens	196
		- Das Verstehen der Aufgabe	196
		- Das Aufstellen des Lösungsplanes	196
		- Die Lösung	197
		- Kontrolle der Lösung	197
		- Wie eignen wir uns die Technik des Aufgabenlösens an?	197
		- Lehrbeispiel	198

A7	Leitlinien zum Lösen von Mechanik-Aufgaben aus der Statik	201
Aufga	aben mit ausführlichen Lösungen	203
•	Aufgaben zum Thema "Allgemeines Kräftesystem" (Aufgabe 1 - Aufgabe 45)	203
•	Aufgaben zum Thema "Gelenkträger, Dreigelenkbogen" (Aufgabe 46 - Aufgabe 53)	252
•	Aufgaben zum Thema "Fachwerk" (Aufgabe 54 - Aufgabe 63)	265
•	Aufgaben zum Thema "Schnittgrößenverläufe an mechanischen Systemen" (Aufgabe 64 - Aufgabe 79)	279
•	Aufgaben zum Thema "Schwerpunkt" (Aufgabe 80 - Aufgabe 86)	312
•	Aufgaben zum Thema "Haftung und Reibung" (Aufgabe 87 - Aufgabe 101)	321
•	Aufgaben zum Thema "Kräftesystem im Raum" (Aufgabe 102 - Aufgabe 111)	344
•	Aufgaben zum Thema "Biegeschlaffes Seil" (Aufgabe 112 - Aufgabe 113)	363
•	Aufgaben zum Thema "Standsicherheit" (Aufgabe 114)	366
Zusan	nmenstellung von Grundlagen aus der Statik (Formelsammlung)	369
F1	Kräfte, Lagerungen, Freimachen, Axiome, Schnittprinzip	369
F2	Zentrales Kräftesystem	374
F3	Allgemeines Kräftesystem	377
F4	Ebenes Fachwerk	380
F5	Schnittgrößen am Balken	382
F6	Schwerpunkt	384
F7	Haftung und Reibung	388
F8	Biegeschlaffes Seil	389
F9	Arbeit; Potential; Prinzip der virtuellen Verrückungen; Stabilität einer Gleichgewichtslage	391
Das g	riechische Alphabet	393
Vorsä	tze und Vorsatzzeichen für dezimale Teile und Vielfache von Einheiten	393
Einhe	itennamen und Einheitenzeichen	394
Einige	e Formeln aus der Mathematik	395
Litera	tur	397
Sachv	vortverzeichnis	399

Übersicht der ausführlich gelösten Beispiele und Aufgaben

Mechanisches Stoffgebiet	Erläuterung	"Info"-Bild	Seite
• Beispiele			
Erstarrungs- methode	Dachbinder-Konstruktion aus Fachwerk und Vollwandträger; Auflagerkräfte		20
Erstarrungs- methode	Kran-Konstruktion; Auflagerkräfte		21
Kräfte mit einem gemeinsamen Angriffspunkt	Mast mit Einzelkräften in einer Ebene; resultierende Kraft		30
Kräfte mit einem gemeinsamen Angriffspunkt	Knotenpunkt eines Fachwerks; Kräfte in den Stäben		33
Gleichgewicht bei drei Kräften in der Ebene (zentrales Kräftesystem)	analytische und zeichnerische Lösung; Lagerkräfte		34
Gleichgewicht bei drei Kräften in der Ebene (zentrales Kräftesystem)	analytische und zeichnerische Lösung; Lagerkräfte		35

Mechanisches Stoffgebiet	Erläuterung	"Info"-Bild	Seite
Räumliches zentrales Kräftesystem	Räumliches Fachwerk; Bestimmung der Stabkräfte		37
Allgemeines Kräftesystem in der Ebene	Einseitig eingespannter Träger; Auflagerreaktionen		48
Allgemeines Kräftesystem in der Ebene	Balken, gelagert mit einem festen Lager und einem Stab; Auflagerreaktionen	<i>h</i> .	48
Allgemeines Kräftesystem in der Ebene	System, gelagert mit einem festen Lager und einem losen Lager; Auflagerreaktionen		50
Gleichgewicht bei vier Kräften in der Ebene (Verfahren nach CULMANN)	Stabgestützte Scheibe, Culmannsche Gerade; Stabkräfte		51
Allgemeines Kräftesystem im Raum	gelagerter Quader; resultierendes Moment		54
Allgemeines Kräftesystem im Raum; skalare Gleich- gewichtsbedin- gungen	Starre Platte durch sechs Stäbe gestützt; Stabkräfte		55
Schnittprinzip beim Lager	Träger auf 2 Stützen mit Kragteil; Lagerkräfte	<u> </u>	61

Mechanisches Stoffgebiet	Erläuterung	"Info"-Bild	Seite
Schnittprinzip beim Lager	Einseitig eingespanntes Tragwerk; Lagerreaktionen		62
Schnittprinzip beim Gelenk	Dreigelenkbogen; Lager- und Gelenkkräfte		64
Schnittprinzip beim Gelenk	Gelenkbalken; Lager- und Gelenkkräfte	<i>A</i> .	66
Schnittprinzip bei räumlichen Systemen	Räumlich gelagerter Träger; Lager- und Stabkräfte		69
Schnittprinzip bei Seil und Kette	Lastaufhängung mit Ketten; Kräfte in den Ketten		74
Schnittprinzip bei Seil und Kette	Mit Seilen und losem Lager gelagerter Balken; Kräfte in den Seilen		75
Schnittprinzip beim Stab	Einfaches ebenes Fachwerk; Stabkräfte		78

Mechanisches Stoffgebiet	Erläuterung	"Info"-Bild	Seite
Schnittprinzip beim Stab	Fachwerk; Stabkräfte		79
Schnittprinzip beim Stab	Fachwerk; Stabkräfte		80
Schnittprinzip am Balken	Balken auf 2 Stützen mit Kragteil; Schnittgrößenverläufe	A. A.	88
Schnittprinzip am Balken	Balken auf 2 Stützen mit Kragteil und Einzelkraftbelastung; Schnittgrößenverläufe	<i>♣</i> . <i>♣</i> .	95
Schnittprinzip am Balken	Balken auf 2 Stützen mit konstanter Streckenlast; Schnittgrößenverläufe	Å. A.	97
Schnittprinzip am Balken	Balken auf 2 Stützen mit Belastung durch ein äußeres Moment; Schnittgrößenverläufe	Å **	100
Schnittprinzip am Balken	Gelenkbalken mit dreiecksförmiger Stre- ckenlast; Schnittgrößenverläufe	<u> </u>	102
Schnittprinzip am Balken. Punktweise Berechnung der Schnittgrößen	Balken auf 2 Stützen; Schnittgrößenverläufe	<u></u>	105
Schnittprinzip am Rahmen	Rahmen mit einem beweglichen Lager; Schnittgrößenverläufe		110
Schnittprinzip am Bogen	Bogen mit einem beweglichen Lager; Schnittgrößenverläufe		114

Mechanisches Stoffgebiet	Erläuterung	"Info"-Bild	Seite
Schnittprinzip bei räumlichen Systemen	Räumlich belasteter Balken; Schnittgrößen		118
Schnittprinzip bei räumlichen Systemen	Räumlich gekröpfter Träger; Schnittgrößen		120
Gewichts- schwerpunkt	Zusammengefügter Körper; Schwerpunktkoordinate; Anwendung Momentensatz		126
Massenschwer- punkt	Quader mit eingesetztem Kunststoffzylinder; Schwerpunktkoordinaten		126
Volumenschwer- punkt	Kreiskegelstumpf; Schwerpunktkoordinate		128
Flächenschwer- punkt	Aus Grundformen aufgebaute Fläche; Schwerpunktkoordinaten		130
Linienschwer- punkt	Ebener Linienzug; Schwerpunktkoordinaten		131
Oberflächenbe- rechnung von Rotationskör- pern	Zylindrisches Gefäß; PAPPUS-GULDINSche Regel; Oberfläche		134
Volumenbe- rechnung von Rotationskör- pern	Drehsymmetrischer Ringkörper; PAPPUS-GULDINSche Regel; Volumen		135

Mechanisches Stoffgebiet	Erläuterung	"Info"-Bild	Seite
Haftung und Reibung	Masse an rauer Wand; Haftungskraft		137
Haftung und Reibung	Masse auf rauer schiefer Ebene; Haftkraft zwischen Masse und schiefer Ebene		139
Haftung und Reibung	Walze auf rauer schiefer Ebene; Kräfte zwischen Walze und schiefer Ebene und Kraft im Seil; Haftungskoeffizient		140
Haftung und Reibung	Körper auf rauer schiefer Ebene; maximal mögliche Kraft <i>F</i> . Wann setzt <i>Kippen</i> ein?	F F	141
Haftung und Reibung	Rolle an rauer Wand; maximal mögliche Kraft <i>F</i>	F	142
Haftung und Reibung	Ringspurzapfen; Grenzdrehmoment		143
Seilhaftung und Seilreibung	Seil mit Haftung; Grenzen für die Kraft <i>F</i>	F	147
Biegeschlaffes Seil	Über eine Rolle geführtes Seil; Länge des vertikalen Seilstückes	***************************************	152

Mechanisches Stoffgebiet	Erläuterung	"Info"-Bild	Seite
Standsicherheit	Standsicherheit einer Zugmaschine auf geneigter Fahrbahn		157
Standsicherheit	Kippgefahr beim Stehaufmännchen		158
Prinzip der virtuellen Verrückungen	Kniehebelpresse; Kräfte im Gleichgewicht		167
Prinzip der virtuellen Verrückungen	Scherenhebebühne; Hub- und Haltekraft		168
Prinzip der virtuellen Verrückungen	ROBERVALsche Waage; Kräfte im Gleichgewichtsfall		170
Prinzip der virtuellen Verrückungen	Flaschenzug; Gleichgewicht am Flaschenzug		171
Prinzip der virtuellen Verrückungen	Scherenkonstruktion; Lagerreaktionen		172
Prinzip der virtuellen Verrückungen	Gelenkträger; Auflagerreaktionen	<u>A</u> <u>A</u> <u>A</u>	174
Stabilität einer Gleichgewichts- lage	Ringkörper mit zwei miteinander verbundenen Massen; Stabiles Gleichgewicht?		175

Mechanisches Stoffgebiet	Erläuterung	"Info"-Bild	Seite
Stabilität einer Gleichgewichts- lage	Stab mit zwei Gewichten; Stabile Gleichgewichtslagen?		177
Stabilität einer Gleichgewichts- lage	Balken mit Feder; Kräfte im Gleichgewicht, stabiles Gleichgewicht?	7	178
Vektorrechnung beim räumlich belasteten System	Räumlich gelagerter Träger; Lager- und Stabkräfte		188
Zur Technik des Aufgabenlösens: Ebenes, allgemeines Kräftesystem	Lehrbeispiel: Scheibe mit vier Kräften in einer Ebene; Bestimmung der Kräfte für das Gleichgewicht		198
Aufgaben in	n Anhang		
Kräftesystem in der Ebene	Laufkatze eines Kranes; resultierende Kraft		203
Kräftesystem in der Ebene	Drei Kräfte in einer Ebene; resultierende Kraft		204
Kräftesystem in der Ebene	Rundhaken; resultierende Kraft		205
Kräftesystem in der Ebene	Kräfte in der Ebene; resultierende Kraft, Moment der Kräfte	A G	206