

Formeln zu Mathematik für die Fachhochschulreife

Bearbeitet von B. Grimm

4. Auflage

VERLAG EUROPA-LEHRMITTEL \cdot Nourney, Vollmer GmbH & Co. KG Düsselberger Straße 23 \cdot 42781 Haan-Gruiten

Europa-Nr.: 85129

Autoren:

Bernhard Grimm Leonberg

Lektorat: Bernhard Grimm

Bildentwürfe: Bernhard Grimm

Bilderstellung: YellowHand, 73257 Köngen, www.yellowhand.de

4. Auflage 2023 Druck 5 4 3 2 1

Alle Drucke derselben Auflage sind parallel einsetzbar, da sie bis auf die Korrektur von Druckfehlern identisch sind.

ISBN: 978-3-8085-8515-3

Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Jede Verwertung außerhalb der gesetzlich geregelten Fälle muss vom Verlag schriftlich genehmigt werden.

© 2023 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten www.europa-lehrmittel.de

Ursprüngl. Satz und Grafik: YellowHand, 73257 Köngen Bearbeitung ab 4. Auflage: Typework Layoutsatz & Grafik GmbH, 86152 Augsburg

Umschlaggestaltung: braunwerbeagentur, Radevormwald

Druck: Plump Druck und Medien GmbH, 53619 Rheinbreitbach

Vorwort zur 1. Auflage:

Die Formelsammlung enthält hauptsächlich die Formeln, die zum Erwerb der Fachhochschulreife benötigt werden. Formeln der Grundlagenmathematik sind auf das Wesentliche reduziert enthalten.

Vorwort zur 2. Auflage:

Es sind nur kleine Änderungen vorgenommen worden, die auf Verbesserungsvorschlägen unserer Leser beruhen. Einige wenige Fehler haben wir natürlich auch korrigiert.

Vorwort zur 3. Auflage:

Neu ist das Kapitel Stochastik. Die Reihenfolge der Kapitel Vektorrechnung und Analysis wurde getauscht.

Ergänzt wurden die Volumenformeln für Pyramiden sowie in der Vektorrechnung die Formeln für Streckenteilungen und spitze Winkel.

Vorwort zur 4. Auflage:

Neu ist das Kapitel Kostenrechnen. Alle Variablen werden kursiv dargestellt. Die Ergebnismenge S in der Stochastik lautet jetzt Ω .

Ihre Meinung interessiert uns!

Teilen Sie uns Ihre Verbesserungsvorschläge, Ihre Kritik aber auch Ihre Zustimmung zum Buch mit.

Schreiben Sie uns an die E-Mail-Adresse: lektorat@europa-lehrmittel.de

Die Autoren und der Verlag Europa-Lehrmittel

Frühjahr 2023

Basiswissen

Durchuschusch
Bruchrechnen
Klammerrechnen
Potenzrechnen
Wurzelrechnen
Logarithmen6
Flächenformeln
Volumenformeln und Oberflächenformeln
Winkelmaße
Winkelfunktionen am Dreieck
Winkelfunktionsbeziehungen10
Lineare Funktion und Gerade11
Quadratische Funktion und Parabel
Potenzfunktion, Parabel und Hyperbel
Logarithmusfunktion12
Exponentialfunktion
Trigonometrische Funktionen13
Umkehrfunktion f^{-1} (auch \bar{f})13
Analysis
Analysis
Ableitungen
Integrale
Symmetrien
Achsenschnittpunkte
Nullstellen15
Näherungsverfahren nach Newton15
Extrempunkte, Wendepunkte16
Tangenten, Normalen
Flächenintegrale
Extremwertberechnung
Spezielle Integrationsverfahren und Integrationsregeln18
Vektorrechnung
Vektordarstellung in R ³ 19
Addition und Subtraktion
Skalare Multiplikation
Einheitsvektoren
Strecke
Lineare Abhängigkeit
Produkte von 2 Vektoren
Orthogonale Projektionen22

Lotvektoren, Normalenvektoren	22
Gerade <i>g</i>	23
Punkt <i>A</i> und Gerade <i>g</i>	23
Lagebeziehung zweier Geraden g und h	24
Kürzester Abstand windschiefer Geraden	
Ebene <i>E</i>	26
Ebene <i>E</i> und Punkt <i>Q</i>	27
Ebene <i>E</i> und Gerade <i>g</i>	27
Ebene <i>E</i> und Ebene <i>F</i>	28
Stochastik	
Zufallsexperimente, Ergebnismenge	29
Ereignis, Ereignisarten	
Häufigkeit und statistische Wahrscheinlichkeit	
Klassische Wahrscheinlichkeit	
Baumdiagramm, Pfadregeln	
Bedingte Wahrscheinlichkeit	
Unabhängige und abhängige Ereignisse	
Gesetze der Kombinatorik, Urnenmodell	
Zufallsvariable, Wahrscheinlichkeitsfunktion, Erwartungswert	
Gewinnspiel	
Varianz und Standardabweichung	
Bernoulli-Ketten	
Kostenrechnung	
Kosten	35
Erlös, Gewinn, Break-even-Point	
Nachfragefunktion, Angebotsfunktion, Gleichgewichtspreis p_{GG}	
Erlösfunktion des Monopolisten	
Gewinnfunktion des Monopolisten bei linearer Kostsenfunktion	
Stückkosten bei linearer steigender Kostenfunktion	
Grenzkosten	
Betriebsminimum, Betriebsoptimum	
Alphabetisches Register	
Aipiiabelistiies negistei	30

Bruchrechnen

Variablen ∈ \mathbb{Z} ; Nenner \neq 0

$$\frac{a}{b} \pm \frac{c}{d} = \frac{a \cdot d \pm c \cdot b}{b \cdot d}$$

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

$$\frac{a}{b}$$
: $\frac{c}{d} = \frac{a \cdot d}{b \cdot c}$

Klammerrechnen

Variablen $∈ \mathbb{R}$

Distributivgesetz:

$$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$$

$$(a+b)\cdot(c+d)=a\cdot c+a\cdot d+b\cdot c+b\cdot d$$

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a + b) \cdot (a - b) = a^2 - b^2$$

Potenzrechnen

$$a, b \in \mathbb{R} \setminus \{0\}; n, m \in \mathbb{N}$$

$$a^n \cdot b^n = (a \cdot b)^n$$

$$a^m \cdot a^n = a^{m+n} \left(a^n \right)^m = a^{m \cdot n}$$

$$a^0 = 1 \qquad a^1 = a$$

$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$

$$a^{m} = a^{m-n}$$
 $a^{n} = \frac{1}{a^{-n}}$

$$(a-b)^n = \begin{cases} +(b-a)^n & \text{für gerades } n \\ -(b-a)^n & \text{für ungerades } n \end{cases}$$

Merke!

$$a^4 = a \cdot a \cdot a \cdot a$$
 aber $4a = a + a + a + a$

$$(-a)^2 = a^2 > 0$$
 aber $-a^2 = -(a^2) < 0$

Wurzelrechnen

 $a, b \in \mathbb{R}_+; c \in \mathbb{R}$; Nenner $\neq 0$

Das Ergebnis der Quadratwurzel ist für D = R stets größer gleich null:

$$\sqrt{a^2} = |a|$$
 aber: $\sqrt[3]{c^3} = c$

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$

$$\frac{^{n}a}{^{n}b} = \sqrt[n]{\frac{a}{b}}$$

$$\sqrt[n]{a^m} = a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$$

Logarithmen

 $a, b, c \in \mathbb{R}_+; n \in \mathbb{R}$; Nenner $\neq 0$

Der Logarithmus ist die Hochzahl n, mit der die Basis a potenziert werden muss, um den Wert bzu erhalten.

$$a^n = b \Leftrightarrow n = \log_a b$$

$$\log_a(b \cdot c) = \log_a b + \log_a c$$

$$\log_a\left(\frac{b}{c}\right) = \log_a b - \log_a c$$

$$\log_a b^n = n \cdot \log_a b$$

Zehnerlogarithmus (am TR: log) Basis a = 10

Natürlicher Logarithmus (am TR: In) Basis
$$a = e$$

Binärer Logarithmus (nicht am TR) Basis
$$a = 2$$

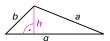
$$\log_{10} b = \lg b$$

$$\log_e b = \ln b$$

$$\log_2 b = \text{lb } b$$

TR = Taschenrechner Die Umkehrfunktion von In x ist e^x. Es gilt:

In $e^n = n$ und $e^{\ln a} = a$ mit e = 2,718281828459...


Flächenformeln

Fläche = A

Dreieck

$$A = \frac{1}{2} \cdot g \cdot h$$

$$A = \frac{1}{2}$$
 · Grundseite · Höhe

Kreis

$$A = \pi \cdot r^2$$
 $r =$ Radius

Durchmesser:

Umfang:

$$U=2\pi\cdot r=\pi\cdot d$$

$$d = 2 \cdot r$$

Kreisring

$$A = \pi \cdot (R^2 - r^2)$$

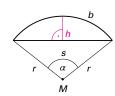
$$R = Außenradius$$

 $r = Innenradius$

Kreissektor (Ausschnitt)

$$A = \pi r^2 \cdot \frac{\alpha}{360^\circ}$$

$$A = \frac{1}{2}b \cdot r$$

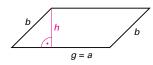


Kreis-

segment (Abschnitt)

$$A = \frac{1}{2} \cdot [b \cdot r - s \cdot (r - h)]$$

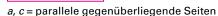
Sehnenlänge
$$s = 2 \cdot \sqrt{2h \cdot r - h^2}$$

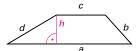

Parallelogramm

$$A = Grundseite \cdot Höhe$$

$$A = g \cdot h$$

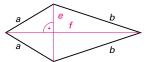
$$A = a \cdot b$$




Trapez

$$A = \frac{1}{2} \cdot (a + c) \cdot h$$

$$h = H\ddot{o}he; b \neq d$$


Quadrat

Drachen

$$A = \frac{1}{2} \cdot e \cdot f$$

e, f = senkrecht aufeinander stehende Diagonalen

Raute

$$A = g \cdot h = a \cdot h$$

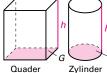
$$A = \frac{1}{2} \cdot e \cdot f$$

Die Raute ist gleichzeitig Drachen und Parallelogramm. Alle Seiten sind gleich lang.

Volumenformeln und Oberflächenformeln

Volumen = V; Oberfläche = O

gleichmäßig dicke Körper


$$V = G \cdot h$$

 $V = Grundfläche \cdot H\"ohe$

$$O = 2G + M$$

M = Mantelfläche

Zvlinderoberfläche:

Prisma

spitze Körper

$$V = \frac{1}{2} \cdot G \cdot h$$

 $V = \frac{1}{3} \cdot G \cdot h$ $V = \frac{1}{3} \cdot Grundfläche \cdot Höhe$

Pyramide:

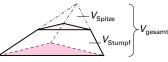
Kegel:

$$O = a^2 + a \cdot \sqrt{a^2 + 4h^2}$$

$$M = a \cdot \sqrt{a^2 + 4h^2}$$

 $O = 2\pi \cdot r \cdot (r + h)$

$$M = \pi r \cdot \sqrt{r^2 + h^2}$$


$$O = \pi \cdot r^2 + \pi \cdot r \cdot \sqrt{r^2 + h^2}$$

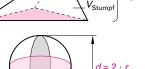
$$M = \pi r \cdot \sqrt{r^2 + h^2}$$

stumpfe Körper

$$V_{\text{Stumpf}} = V_{\text{gesamt}} - V_{\text{Spitze}}$$

z.B. für Pyramidenstumpf, Kegelstumpf

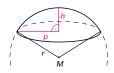
Kugel


$$V = \frac{4}{3} \cdot \pi \cdot r^3$$

Oberfläche:

$$O = \pi \cdot d^2$$

$$U = 2\pi \cdot r$$


Kugelsegment (Abschnitt)

$$V = \frac{1}{3}\pi h^2(3r - h)$$

$$O = \pi h (4r - h)$$

$$p^2 = h \cdot (2r - h) \qquad p$$

p = Grundkreisradius

Winkelmaße

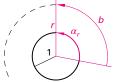
Gradmaß (DEG) und Bogenmaß (RAD)

Gradmaß

$$\alpha = \frac{180^{\circ}}{\pi} \cdot \alpha_r$$

Bogenmaß

$$\alpha_r = \frac{\pi}{180^\circ} \cdot \alpha$$


Der Halbkreis hat $\alpha = 180^{\circ}$ (DEG), $\alpha_r = \pi$ (RAD).

Bogenlänge

$$b = \frac{\pi}{180^{\circ}} \cdot \alpha \cdot r$$

$$b = \alpha_r \cdot r$$

Einheitskreis: r = 1; $U = 2\pi$

Das Bogenmaß α_r ist die Bogenlänge am Einheitskreis.

Winkelfunktionen am Dreieck

Dreieck mit rechtem Winkel

$$sin(Winkel) = \frac{Gegenkathete}{Hypotenuse}$$

$$\sin \alpha = \frac{a}{c}$$
 $\alpha = \arcsin \frac{a}{c}$

$$cos(Winkel) = \frac{Ankathete}{Hypotenuse}$$

$$\cos \alpha = \frac{b}{c}$$
 $\alpha = \arccos \frac{b}{c}$

$$tan(Winkel) = \frac{Gegenkathete}{Ankathete}$$

$$\tan \alpha = \frac{a}{b} \quad \alpha = \arctan \frac{a}{b}$$

Umkehrfunktionen (Arkusfunktionen) beim Taschenrechner:

arcsin:

arccos:

arctan:

cos⁻¹

tan⁻¹

beliebiges Dreieck

Sinussatz:

$$\frac{\sin \alpha}{\sin \beta} = \frac{a}{b} \qquad \frac{\sin \alpha}{\sin \gamma} = \frac{a}{c} \qquad \frac{\sin \gamma}{\sin \beta} = \frac{a}{b}$$

Merke! Der Taschenrechner berechnet mit dem Sinussatz nur Winkel bis 90°.

Kosinussatz:

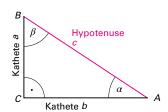
$$a^2 = b^2 + c^2 - 2bc \cdot \cos \alpha$$

$$b^2 = a^2 + c^2 - 2ac \cdot \cos \beta$$

$$c^2=a^2+b^2-2ab\cdot\cos\gamma$$

Umkreisradius R:

$$R = \frac{a}{2 \cdot \sin \alpha} = \frac{b}{2 \cdot \sin \beta} = \frac{c}{2 \cdot \sin \beta}$$


Inkreisradius r:

$$r = \frac{b+c-a}{2} \cdot \tan \frac{\alpha}{2} = \frac{a+b-c}{2} \cdot \tan \frac{\gamma}{2} = \frac{a+c-b}{2} \cdot \tan \frac{\beta}{2}$$

Höhen:

$$h_c = b \cdot \sin \alpha$$
 $h_a = b \cdot \sin \gamma$ $h_b = c \cdot \sin \alpha$

sin = Sinus

Die Hypotenuse liegt gegenüber dem rechten Winkel.

Die Kathete a ist die Gegenkathete von α und die Ankathete von β .

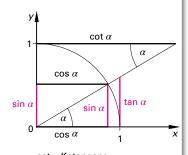
Umkreis mit Umkreisradius R Inkreis mit Inkreisradius r

Winkelfunktionsbeziehungen

Beziehungen

$$\cot \alpha = \frac{1}{\tan \alpha} \quad \tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$


$$\sin^2\alpha + \cos^2\alpha = 1$$

$$\sin(2\alpha) = 2 \cdot \sin \alpha \cdot \cos \alpha$$

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$$

$$\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha}$$

$$\tan \alpha = \frac{\sin \alpha}{\pm \sqrt{1 - \sin^2 \alpha}}$$

cot = Kotangens

Merke!

$$\sin^2 \alpha = (\sin \alpha)^2$$

aber: $\sin \alpha^2 = \sin(\alpha)^2$

$$\tan(2\alpha) = \frac{2 \cdot \tan \alpha}{1 - \tan^2 \alpha}$$

$$\sin(3\alpha) = 3\sin\alpha - 4\sin^3\alpha$$

 $\cos(3\alpha) = 4\cos^3\alpha - 3\cos\alpha$

$$\sin(\alpha \pm \beta) = \sin \alpha \cdot \cos \beta \pm \cos \alpha \cdot \sin \beta$$

$$cos(\alpha \pm \beta) = cos \alpha \cdot cos \beta \mp sin \alpha \cdot sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta}$$

$$\sin \alpha \pm \sin \beta = 2 \cdot \sin \frac{\alpha \pm \beta}{2} \cdot \cos \frac{\alpha \mp \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cdot \cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \cdot \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

Werte

Winkel im Gradmaß (DEG)	0°	30°	45°	60°	90°	180°	270°	360°
Winkel im Bogenmaß (RAD)	0	$\frac{1}{6} \cdot \pi$	$\frac{1}{4} \cdot \pi$	$\frac{1}{3} \cdot \pi$	$\frac{1}{2} \cdot \pi$	π	$\frac{3}{2} \cdot \pi$	2 · π
sin(Winkel)	0	1 2	$\frac{1}{2} \cdot \sqrt{2}$	$\frac{1}{2} \cdot \sqrt{3}$	1	0	-1	0
cos(Winkel)	1	$\frac{1}{2} \cdot \sqrt{3}$	$\frac{1}{2} \cdot \sqrt{2}$	1/2	0	-1	0	1
tan(Winkel)	0	$\frac{1}{3} \cdot \sqrt{3}$	1	√3	$\rightarrow \infty$	0	$\rightarrow \infty$	0