EUROPA-FACHBUCHREIHE für Bauberufe

Peschel · Jansen · Nennewitz · Schulzig · Steinle

Zimmerer Tabellenbuch

Tabellen – Formeln – Regeln – Bestimmungen

Bearbeitet von Meistern, Ingenieuren und Lehrern an berufsbildenden Schulen

Lektorat: Peter Peschel

6. überarbeitete Auflage

VERLAG EUROPA-LEHRMITTEL · Nourney, Vollmer GmbH & Co. KG Düsselberger Straße 23 · 42781 Haan-Gruiten

Europa-Nr.: 43177

Autoren des Tabellenbuches

Peschel, Peter Oberstudiendirektor a.D.
Jansen, Thomas Studienrat
Nennewitz, Ingo Tischlermeister
Schulzig, Sven Oberstudienrat
Steinle, Jürgen Technischer Oberlehrer

Göttingen Aurich Wiesbaden Kassel Ingerkingen

Lektorat Peter Peschel

Bildbearbeitung Zeichenbüro des Verlags Europa-Lehrmittel, Ostfildern

Diesem Buch wurden die neuesten Ausgaben der DIN-Blätter sowie anderer Bestimmungen und Richtlinien zugrunde gelegt (Redaktionsschluss 31.12.2021). Verbindlich sind jedoch nur die DIN-Blätter und jene Bestimmungen selbst.

Die DIN-Blätter können von der Beuth-Verlag GmbH, Burggrafenstraße 6, 10787 Berlin, bezogen werden.

6. überarbeitete Auflage 2022

Druck 5 4 3 2 1

Alle Drucke derselben Auflage sind parallel einsetzbar, da sie bis auf die Korrektur von Druckfehlern unverändert sind.

ISBN 978-3-8085-4982-7

Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Jede Verwertung außerhalb der gesetzlich geregelten Fälle muss vom Verlag schriftlich genehmigt werden.

© 2022 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten www.europa-lehrmittel.de

Satz: PER MEDIEN & MARKETING GmbH, 38102 Braunschweig

Umschlag: Blick Kick Kreativ KG, 42653 Solingen Druck: mediaprint solutions GmbH, 33100 Paderborn

5

	/orwort
FACHMATHEMATIK 7 34	Das "Zimmerer Tabellenbuch" erweitert die bewährte Europa- rachbuchreihe für Bautechnik. Es eignet sich besonders für die Aus- bildung der Sägewerker sowie der Zimmerer und Dachdecker bei ernfeldorientiertem Unterricht.
	s kann jedoch seines eigenständigen Charakters wegen sowohl illein als auch mit anderen Lehrbüchern aus der Aus- und Weiterbil- lung, sowie in der beruflichen Praxis verwendet werden.
STATIK UND LASTANNAHMEN 35 64	Der Inhalt des Tabellenbuches umfasst Tabellen, Formeln, DIN-Nornen, Regeln und Bestimmungen von Behörden und Institutionen als nuch viele Stoffwerte und Konstruktionsgrößen sowie Faustformeln nus der Praxis. Die Nähe zum Tabellenbuch Bautechnik und zum Tabellenbuch Holztechnik ist gewollt, das Zimmerer Tabellenbuch geht aber speziell auf die Ausbildungsinhalte der Zimmerer, Dachlecker und Sägewerker ein.
HOLZ UND NAGEL 65 134	Die jetzige 6. Auflage entspricht in der Abfolge der Kapitel und Thenen der vorherigen. Alle Normangaben wurden überprüft und, falls notwendig, aktualisiert. Das Teilkapitel 4.2 Dachbaustoffe und Dachdeckung wurde um auspildungsrelevante Inhalte für den Ausbildungsberuf Dachdecker
BAUSTOFFE	Prweitert. Die Teilkapitel 3.8 Klebstoffe, 4.1 Mauersteine, 4.3 Beton sowie 1.4 Betonstahl und Baumetalle wurden erweitert. Das Teilkapitel 8.8 Schalung wurde neu aufgenommen. Zudem ist las neue Gebäudeenergiegesetz (GEG) durchgängig berücksichtigt.
135 172 BAU- KONSTRUKTIONEN	in schneller Zugriff wird durch das bewährte Daumenregister rmöglicht. Großer Wert wurde auf die Übersichtlichkeit der Darstelung gelegt. Tabellen und Formeln sind durch eine Rasterung hervorehoben. Viele Beispiele unterstützen die Formeln und Tabellen. Duerverweise auf ähnliche Inhalte, verwendete Tabellen oder an inderer Stelle aufgeführte Formeln werden durch ein Dreieck ▶ mit beitenzahl gekennzeichnet.
173 232	as Inhaltsverzeichnis am Anfang des Buches wird durch ein Teilin- altsverzeichnis vor jedem Kapitel ergänzt. Ebenso werden Literatur- inweise und Querverweise auf die gültigen DIN-Blätter vor den Teil- apiteln aufgeführt.
BAUTENSCHUTZ	Das Sachwortverzeichnis am Schluss des Tabellenbuches ist beson- lers ausführlich gehalten und ermöglicht ein schnelles Finden einzel- ner Begriffe.
233 272 ZEICHNEN	Allen, die durch ihre Anregungen zur Entwicklung des Zimmerer Tabellenbuches beigetragen haben, insbesondere den Autoren des Tabellenbuches Bautechnik, des Tabellenbuches Holztechnik und des Tachbuches Bautechnik nach Lernfeldern "Zimmerer" und den im Quellen- und Literaturverzeichnis genannten Firmen, Institutionen und Verlagen sei an dieser Stelle herzlich gedankt.
UND SCHIFTEN 273 320	Das vorliegende Werk wurde mit der gebotenen Sorgfalt erarbeitet. Dennoch übernehmen Autoren, Lektor und Verlag für die Richtigkeit von Fakten, Hinweisen und Vorschlägen sowie für eventuelle Druckind Satzfehler keine Haftung.
	ür Anregungen zur Weiterentwicklung sowie für Verbesserungs-

Autoren und Verlag

vorschläge und Fehlerhinweise sind wir dankbar. Sie können dafür

unsere Adresse lektorat@europa-lehrmittel.de nutzen.

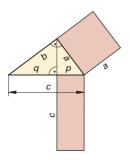
Göttingen, im Sommer 2022

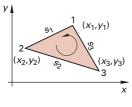
BAUBETRIEB

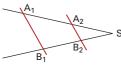
321 ... 382

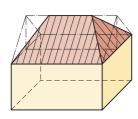
Inhaltsverzeichnis 1 FACHMATHEMATIK HOLZ UND NAGEL 7 3 Firmenverzeichnis 66 1.1 Zeichen, Begriffe und Tafeln 8 Literatur und Normen..... 66 1.2 Rechenarten 11 3.1 Aufbau und Holzarten 67 1.3 Prozentrechnung und Zinsrechnung 15 Aufbau des Holzes 3.1.1 67 1.4 Längen und Winkel 3.1.2 Nadelholz 68 1.5 Flächen 3.1.3 Laubholz 3.1.4 Kennwerte für Holzarten 70 Körper 1.6 22 3.1.5 Terrassenholz – Gartenholz 71 1.7 Geometrie 25 3.1.6 Charakteristische Werte..... 73 Rechtwinklige Dreiecke 1.7.1 25 Eurocode 5 3.1.7 75 1.7.2 Winkelfunktionen..... 26 Holzschädlinge und Holzfehler Schiefwinklige Dreiecke 28 3.2 77 1.7.3 1.7.4 Steigung 29 3.3 Holzfeuchte 78 Strahlensätze und Ähnlichkeiten..... 1.7.5 30 Holz als Handelsware 3.4 82 1.8 Gleichungen und Ungleichungen 31 Qualitätssortierung für Stammholz..... 3.4.1 82 Schnittholz Einteilung..... 1.9 Funktionen 3.4.2 90 Sortierklassen 3.4.3 92 Konstruktionsvollholz 3.4.4 95 Handelsgrößen und Handelsformen... 3.4.5 97 Holzwerkstoffe 101 3.5 3.5.1 Übersicht der Holzwerkstoffe 101 3.5.2 2 **STATIK UND** 3.5.3 Furnierschichtholz 103 LASTANNAHMEN Sperrholz 103 35 3.5.4 3.5.5 Platten aus langen, ausgerichteten Sicherheitskonzept nach Eurocode..... 35 Physikalische Grundgrößen..... 36 Spanplatten 104 3.5.6 Mechanik 2.1 37 3.5.7 2.1.1 Physikalische Grundlagen..... 37 3.5.8 2.1.2 Gleichförmige und beschleunigte 3.5.9 Systeme der Konformitäts-Bewegung 39 bescheinigung 108 Arbeit, Energie, Leistung, 2.1.3 3.6 Verbindungsmittel 109 Wirkungsgrad..... 40 3.6.1 Nägel und Klammern 109 2.1.4 Einfache Maschinen 41 3.6.2 Holzschrauben 111 2.2 Statik 42 3.6.3 Befestigungsmittel für Gipsplatten, 2.2.1 Kräfte und Momente 42 2.2.2 Gleichgewichtsbedingungen 44 Gewindeschrauben, Muttern und 3.6.4 2.2.3 Statische Systeme Unterlegscheiben 114 2.2.4 Spannungen Blechschrauben, Bohrschrauben, 50 3.6.5 2.2.5 Formänderungen..... 52 3.7 Ingenieurmäßige Verbindungen...... 117 2.3 Lastannahmen 54 Verbinder 117 Wichte von Baustoffen und Bauteilen 3.7.1 2.3.1 54 Dübel besonderer Bauart, Passbolzen 120 2.3.2 Eigenlasten für Dächer 57 3.7.2 Nutzlasten 3.7.3 Schrauben 123 2.3.3 Nägel 124 Eigen- und Nutzlast, Trennwand-3.7.4 2.3.4 zuschlag 60 Klebstoffe 127 3.8 Windlasten..... 2.3.5 60 Klebstofftechnische Begriffe 127 2.3.6 Schneelasten 63 Gebräuchliche Klebstoffe in der Holz-2.4 Eurocode (EC) 64 technik..... 127

Inhaltsverzeichnis


3.9	Befestigungsmittel Dübel	129	5	BAUKONSTRUKTION	173
3.9.1	Ankergrund, Bohrverfahren,	400		Firmenverzeichnis	17/
3.9.2	Montage			Literatur und Normen	
3.9.3	Dübelarten		5.1	Holzkonstruktionen	
3.3.3	besondere berestigungsmitter	134	5.1.1	Zimmermannsmäßige Holz-	. 1/5
			0.1.1	verbindungen	. 179
			5.1.2	Dachteile – geometrische und	
4	BAUSTOFFE	135		funktionelle Bedeutungen	
7			5.1.3	Dachkonstruktionen	
	Normen	135	5.1.4	Fachwerkwand	
4.1	Mauersteine	136	5.1.5	Holzwände	
4.1.1	Ziegel und Klinker		5.2	Holzbalkendecken und Fußböden	
4.1.2	Kalksandsteine		5.2.1	Holzbalkendecken	
4.1.3	Mauersteine aus Beton / Betonsteine / Porenbetonsteine		5.2.2	Holzfußböden	
4.1.4	Steinformate und Baustoffbedarf		5.3	Wintergärten	. 191
4.1.5	Sondersteine/Sonderziegel		5.4	Hallenkonstruktion	193
4.2	Dachbaustoffe und Dachdeckungen		5.5	Treppen	195
4.2.1	Übersicht der Baustoffe für Deckung	141	5.5.1	Maßbegriffe und Bezeichnungen	. 195
7.2.1	und Abdichtung	142	5.5.2	Steigungsverhältnisse	. 198
4.2.2	Dachneigung		5.5.3	Treppenwangen und Tragholme	. 199
4.2.3	Faserzement-Wellplatten	142	5.5.4	Verziehen von Treppen	200
4.2.4	Dachsteine und Dachziegel	143	5.6	Türen, Fenster, Dachflächenfenster	202
4.2.5	Deckung mit Dachsteinen und		5.6.1	Türen	202
400	Dachziegeln		5.6.2	Fenster	
4.2.6 4.2.7	Schiefer und Faserzementplatten		5.6.3	Dachflächenfenster	207
4.2.7	Metalldeckung Dachabdichtungen		5.7	Innenausbau	209
4.2.9	Dachbahnen und Dachdichtungs-	140	5.7.1	Nichttragende Trennwände	209
7.2.0	bahnen	150	5.7.2	Wandverkleidungen	214
4.2.10	Dachrinnen und Regenfallrohre	152	5.7.3	Deckenverkleidungen	215
4.3	Beton	154	5.8	Mauerwerksbau	216
4.3.1	Zemente		5.8.1	Maßordnung im Hochbau	216
4.3.2	Gesteinskörnungen	155	5.8.2	Mauerwerksverbände	. 217
4.3.3	Einteilung des Betons	156	5.8.3	Wandarten und Wanddicken	218
4.3.4	Betonzusätze	158	5.8.4	Charakteristische Druckfestigkeit für Mauerwerk	210
4.4	Betonstahl und Baumetalle	159	5.8.5	Konstruktionsregeln	
4.5	Mörtel	162	5.8.6	Hausschornsteine/Abgasanlagen	
4.6	Putzsysteme und Wärmedämm-		5.9	Stahlbetonbau	224
	verbundsysteme	164	5.9.1	Übersicht und Zuordnung	224
4.7	Plattenwerkstoffe	167	5.9.2	Betondruck- und Betonzugfestig-	
4.7.1	Gipsplatten / Gipsbauplatten /	4.07		keiten	225
470	Wandbauplatten		5.9.3	Fundamente aus unbewehrtem	225
4.7.2 4.7.3	Faserzementplatten		5.9.4	Beton	
4.7.4	Holzwolle-Leichtbauplatten		5.9.4	Querschnittstafeln für Balken- und	. 220
	·		5.5.5	Plattenbewehrung	229
4.7.5	Hochdruck Schichtstoffplatten		5.9.6	Massivdecken/Rippendecken und	
4.8	Unterspannbahn / Unterdeckbahn	170		Balkendecken	230


Inhaltsverzeichnis BAUTENSCHUTZ BAUBETRIEB 6 231 8 Firmenverzeichnis 322 Wirkung der bauphysikalischen Einflüsse auf den Menschen 232 Literatur und Normen 322 8.1 Zimmerer-Betrieb als Dienstleister 323 Dämmstoffe, Dichtungsstoffe und 6.1 8.1.1 Arten von Dienstleistungen...... 323 Sperrstoffe 233 8.1.2 6.2 Wärmeschutz 8.1.3 Bauplanung 325 6.2.1 8.1.4 6.2.2 Wärmetechnische Mindest-8.2 Messen im Zimmererhandwerk 332 8.2.1 Wärmebrücken 243 6.2.3 8.2.2 6.2.4 Anforderungen an den Wärmeschutz 8.3 Handwerkzeug und Maschinen 336 8.3.1 Handwerkzeuge 336 6.3 Energieeinsparverordnung 245 8.3.2 6.4 Feuchteschutz und Tauwasserschutz 250 8.3.3 Elektrowerkzeuge, Handmaschinen.... 342 6.4.1 Klimabedingter Feuchtigkeitsschutz... 250 8.3.4 6.4.2 Feuchteschutztechnische Rechen-8.4 Kalkulation 345 6.4.3 Schutzmaßnahmen gegen Bauvertragsrecht 353 8.5 Tauwasserbildung 253 8.5.1 Vergabe- und Vertragsrecht...... 353 6.5 Schallschutz 257 8.5.2 8.5.3 Baugesetze und Verordnungen...... 358 6.6 Brandschutz 262 Umwelt- und Arbeitsschutz 360 8.6 6.7 Bauen im Bestand 267 8.6.1 Oberflächenschutz 270 6.8 8.6.2 Gefahrstoffe 361 Lösemittel und Verdünnungsmittel 364 8.6.3 8.6.4 Betriebsanweisung 365 7 ZEICHNEN UND SCHIFTEN 273 8.7 Gerüstbau und Schalung 370 8.7.1 Arbeitsgerüste 370 7.1 Normschrift 274 8.7.2 7.2 Zeichengeräte und Materialien 276 8.7.3 8.7.4 7.3 Bemaßung 277 Zimmerer-Tradition 377 8.8 7.4 Bauzeichnungen 281 7.5 Grundkonstruktionen 290 Sachwortverzeichnis 383 7.6 Darstellende Geometrie 297 In den Umschlagseiten 7.7 Schiften 303 Umwandlung von Gleichungen Dachformen 303 Holz-Querschnitte Dachausmittlungen 304 7.7.2 7.7.3 Schiftmethoden 309 7.7.4 Austragungen am gleichgeneigten Walmdach (GGWD)......311 7.7.5 Austragungen am ungleichgeneigten Walmdach (UGGWD) 315 7.7.6 Computer-Abbund 319 7.7.7 Rechnerischer Abbund 320

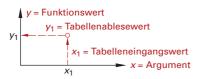

Inhaltsverzeichnis 7


8000	_	
€	/	
4000 2000	-	
≥ ₂₀₀₀	- /	
0		
J	0 1 2 3 m	3 5
	Volumen —	-

а	b	С
3	4	5
5	12	13
7	24	25
8	15	17
9	40	41
11	60	61
12	35	37
13	84	85
20	21	29

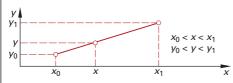
1	FACHMATHEMATIK	7
1.1	Zeichen, Begriffe und Tafeln. Konstanten (gerundet). Umwandlungstabellen. Interpolation. Aufrunden und Abrunden.	8 9 10
1.2	Rechenarten Grundrechenarten Klammerregeln Bruchrechnung Dreisatzrechnung Potenzen Binomische Formeln Wurzeln	11 12 13 14 14
1.3	Prozentrechnung und Zinsrechnung	. 15
1.4	Längen und Winkel ■ Längenteilung ■ Winkel	. 16
1.5	Flächen Dreieck Unregelmäßiges Vieleck Regelmäßige Vielecke Kreis Ellipse Flächen und Schwerpunkte Flächen am Dach	17 18 18 19 19
1.6	Körper. Würfel Pyramide. Pyramidenstumpf Rampe Reguläre Polyeder (platonische Körper) Rotationssymmetrische Körper	22 22 23 23 24
1.7 1.7.1 1.7.2	Geometrie Rechtwinklige Dreiecke Winkelfunktionen Längen und Flächen am Dach	. 25 . 26
1.7.3	Schiefwinklige Dreiecke Sinussatz Kosinussatz	. 28 . 28 . 28
1.7.4 1.7.5	Strahlensätze und Ähnlichkeiten	
1.8	Gleichungen und Ungleichungen Äquivalenzumformungen. Ungleichungen Beträge/Betragsungleichungen Gleichungen 1. Grades (lineare Gleichungen). Gleichungen 2. Grades (quadratische Gleichungen). Lineare Gleichungen mit 2 Variablen.	31 31 31 31 32
1.9	Funktionen	. 33
	(ganzrationale Funktion 1. Grades) Quadratische Funktion (ganzrationale Funktion 2. Grades)	
	■ Taschenrechner	

1.1 Zeichen, Begriffe und Tafeln


Technische und naturwissenschaftliche Zusammenhänge werden meist in ihrer kürzesten Form durch Formeln beschrieben. Basisgrößen, Basiseinheiten und die Vorsätze vor Einheiten werden in der DIN 1301 benannt, allgemeine Formelzeichen werden *kursiv* geschrieben und in DIN 1304 festgesetzt.

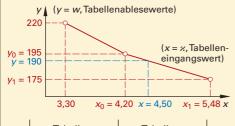
	penannt, allgemeine Fo									
Mathem. Zeichen	Sprechweise	Mather Zeiche	l Sr	rechwei	se	Mathe Zeich		Sprech	weise	9
=	gleich	1	⊥ senkrecht auf		$A \Rightarrow$	$A \Rightarrow B$ wenn A , da		4, dan	n <i>B</i>	
#	ungleich	ll.	ра	rallel zu		$A \Leftrightarrow$	$A \Leftrightarrow B$ A gena			ın,
:=	definitionsgemäß	X	Be	trag von	ıχ			wenn i		
	gleich	+	plı	us		7, ^		nicht, ı		aer
≈	ungefähr gleich	-	mi	inus		AB		Streck		
	usw., bis	×,·	m	al		ĀB		Bogen Gerade		
	entspricht	:,/	du	ırch, gete	eilt durch	ı g ≰		Winkel		
<	kleiner als	Σ		ımme vo		<u>}</u>		rechte		rol.
≤	kleiner oder gleich			ımme all		m m		Steigu		Kei
>	größer als	П		odukt vo odukt all		P, C		Punkte	U	
≥	größer oder gleich	√		ıadratwı				Koordi		
>	sehr groß gegen	l v v		te Wurze		x, y,	_	Länge	naten	
≪	sehr klein gegen	'		elta-x	aus	A		Fläche		
~	asymptotisch gleich	Δ <i>X</i> %		ozent		V				
	proportional	% %		ozeni omille				Volum		
≅	kongruent zu					∞		unena	lich	
Römische Zahlen Konstanten (gerundet)										
	1 XL = 40	Größe	Zahlei	nwert	Größe	Zahlenwe	ert	Größe	Zahl	enwert
	L = 50 $LX = 60$	π	3.141	593	$\sqrt{1/\pi}$	0,564 19	90	1:e ²	0.1	35 335
	$\begin{array}{cccc} LX &= & 00 \\ 4 & LXX &= & 70 \end{array}$	π:3	· '	198	In π	1,144 7		√1/e	,	06 531
	5 LXXX = 80		,			•		'	,	
VI =	3 XC = 90	π:4		398	lg π	0,497 1		e ^e	-	54 262
VII =	C = 100	π: 180	0,017	453	√2	1,414 2	14	π^{e}	22,4	59 158
	CCC = 300	π^2	9,869	604	√3	1,732 0	51	In 10	2,3	02 585
	CD = 400	π ³	31,006	277	е	2,718 28	32	lg e	0,4	34 294
X = 10 $XI = 1$		$\sqrt{\pi}$	1,772	454	e ²	7,389 0	56	³√e	1.3	95 612
XI = I XIV = 1		1:π	· '	310	e ³	20,085 5		e ^π	,	40 693
XIX = 1					_				-	
XX = 20		180 : π	· '	780	l∕e	1,648 7		e ^{2 π}	-	91 656
XXI = 2	1 M = 1000	$1:\pi^2$	0,101	321	1 : e	0,367 8	79	$e^{\pi/2}$	4,8	10 477
Große Z	ahlen	Griec	hische	s Alpha	abet					
10 ⁶ = Mi	llion	Αα	Ββ	Γγ	Δδ	Εε	Ζζ	, H	η	Θθ
10 ⁹ = Mi	lliarde	Alpha	Beta	Gamma	Delta	Epsilon	Zeta	a E	ta	Theta
. 10	lion	Ιι	Κ×	Λλ	Μμ	Νν	Ξ &	= 0	0	Ππ
10 ¹² = Billion		lota		Lambda	1 '	Ny	Zi Xi	·	kron	Pi
$10^{12} = Bil$ $10^{18} = Tri$	illion	i iota i								
						_ ′				
10 ¹⁸ = Tr	uadrillion	P Q	$\Sigma \sigma$ Sigma	T τ	γ v Ypsilor	Φφ	Χ χ Chi		ψ si	Ω ω Omega

Umwandlur	ngstabe	llen				
Längeneinhei	ten	1 km	ı = 1000 m			
⇒	× 10		× 10	>	< 10	
1 m		10 dm		100 cm		1 000 mm
0,1 m		1 dm		10 cm		100 mm
0,01 m		0,1 dm		1 cm		10 mm
0,001 m		0,01 dm	1	0,1 cm		1 mm
		: 10		: 10		:10 ←
Flächeneinhei	ten	1km²	² = 1 000 000 m	1 ²		
⇒	× 100		× 100	X	100	
1 m ²		100 dm	2	10 000 cm ²		1 000 000 mm ²
0,01 m ²		1 dm ²		100 cm ²		10 000 mm ²
0,0001 m ²		0,01 dm		1 cm ²		100 mm ²
0,000 001 m ²		0,0 001	dm ²	0,01 cm ²		1 mm ²
		: 100		: 100		: 100 ←
Volumeneinh	eiten	1 km	$n^3 = 1 000 000 0$	000 m ³		
	× 1000		× 1000		1000	
1 m ³		1 000 dı	m ³	1 000 000 cm ³		1 000 000 000 mm ³
0,001 m ³		1 dm ³	2	1 000 cm ³		1 000 000 mm ³
0,000 001 m ³	2	0,001 dı		1 cm ³		1 000 mm ³
0,000 000 001 r	n³	0,000 00	01 dm³	0,001 cm ³		1 mm ³
		: 1000		: 1000		: 1000 ←
Masseeinheit	en					
⇒	× 1000		× 1000	× '	1000	
1 t		1000 kg		1 000 000 g		1 000 000 000 mg
0,001 t		1 kg		1 000 g		1 000 000 mg
0,000 001 t		0,001 kg		1 g		1 000 mg
0,000 000 001 t		0,000 00	01 kg	0,001 g		1 mg
		: 1000		: 1000		: 1000 ←
Krafteinheiter	n					Einheiten der Spannung
⇒	× 1000		× 1000			1 Pa = 1 N/m ²
1 MN		1 000 kľ	N	1 000 000 N		$1 \text{ Pa} = 1 \text{ N/m}^2$ $1 \text{ MN/m}^2 = 1 \text{ N/mm}^2$
0,001 MN		1 kN		1 000 N		$1 \text{ kN/cm}^2 = 1 \text{ N/mm}^2$ $1 \text{ kN/cm}^2 = 10 \text{ N/mm}^2$
0,000 001 MN		0,001 kľ	V	1 N		$1 \text{ kN/m}^2 = 0.001 \text{ N/mm}^2$
		: 1000		: 1000	=	- 0,001 William
Masse- und K	rafteinhe	eiten	1 kg ≙ 9,81 N	Winkeleinheiten		180° ≙ 200gon
0,1 kg		1 N		(Grad) 1° = 60	,	1 rad = (180/π)°
1 kg		10 N		(Minute) $1' = 60$		1 ^{gon} = (9/10)°
10 kg		100 N		(Sekunde) 1"		1° = (10/9) ^{gon}
100 kg			N (1 kN)	Umrechung		,,
1000 kg (1 t)		10 000	N (10 kN)		60′/1°	$1,4^{gon} = 1,4^{gon} \cdot 9^{\circ}/10^{gon}$
Zeiteinheiten				= 1° + 24′		= 1,26°
(Jahr) 1 a	= 365 d	(Minute)	1' = 60"	= 1° 24′	10/60/	1 369 - 1 369 10gon/09
	= 24 h	(Sekund		1° 24′ = 1° + 24′ · 1	1 70U	1,26° = 1,26° · 10 ^{gon} /9° = 1,4 ^{gon}
		,Cokund		= 1° + 0,4°		= 1,40=
(Tag) 1 d		(Monat)	M = (1/1/12)			
(Tag) 1 d (Stunde) 1 h	= 60'	(Monat)	, ,	= 1,4°	Dac	andara Valumanainhaitan
(Tag) 1 d (Stunde) 1 h Besondere Lä	= 60'		Besondere Fla	ächeneinheiten		ondere Volumeneinheiten
(Tag) 1 d (Stunde) 1 h Besondere Lä 1 Zoll (") = 2,5	= 60' ngeneinl i4 cm		Besondere Fla 1 km ² = 10	ächeneinheiten 00 ha	1 hl	= 100 l
(Tag) 1 d (Stunde) 1 h Besondere Lä 1 Zoll (") = 2,5 1 inch = 1 Z	= 60' ngeneinl i4 cm Coll		Besondere Flat 1 km ² = 10 1 ha = 10	acheneinheiten 00 ha 00 a	1 hl 1 ba	= 100 l rrel = 1,59 hl
(Tag) 1 d (Stunde) 1 h Besondere Lä 1 Zoll (") = 2,5 1 inch = 1 Z 1 mile = 160	= 60' ngeneinl 64 cm Coll 09 m		Besondere Fla 1 km ² = 10 1 ha = 10 1 a = 10	acheneinheiten 00 ha 00 a 00 m ²	1 hl 1 ba 1 ga	= 100 l rrel = 1,59 hl llone = 4,546 l
(Tag) 1 d (Stunde) 1 h Besondere Lä 1 Zoll (") = 2,5 1 inch = 1 Z 1 mile = 160 1 mil = 0,0	= 60' ngeneinl i4 cm Coll	neiten	Besondere Fla 1 km ² = 10 1 ha = 10 1 a = 10 1 Morgen = 25	acheneinheiten 00 ha 00 a 00 m ²	1 hl 1 ba	= 100 l rrel = 1,59 hl llone = 4,546 l = 1 dm ³


Interpolation

Tabellen enthalten immer nur eine Auswahl von einander zugeordneten Zahlen- oder Funktionswerten (der Funktionswert y_1 wird dem Argument x_1 zugeordnet).

Werte zwischen zwei Tabelleneingangswerten lassen sich durch **lineare Interpolation** bestimmen. Dabei wird vereinfacht vorausgesetzt, dass der Zuwachs der Tabellenablesewerte (y-Werte, Funktionswerte) proportional zum Zuwachs der Tabelleneingangswerte (x-Werte, Argumente) erfolgt.


$$y = y_0 + \frac{y_1 - y_0}{x_1 - x_0} \cdot (x - x_0)$$

Bei steigender Tendenz der Tabellenwerte in der Bruch $(y_1 - y_0)/(x_1 - x_0)$ positiv, bei fallender Tendenz negativ.

Beispiel

Gesucht ist der Wasseranspruch w für die Körnungsziffer x = 4,50.

Tabellen- eingangswert x	Tabellen- ablesewert w in I/m ³
$x_0 = 4,20$	y ₀ = 195
$x_1 = 5,48$	y ₁ = 175

$$y = 195 + \frac{175 - 195}{5,48 - 4,20} \cdot (4,50 - 4,20) = 190$$

Der Wasseranspruch für die Körnungsziffer x = 4,50 beträgt 190 $1/m^3$.

Aufrunden und Abrunden

Aufrunden: Die letzte Ziffer einer gerundeten Zahl ist um 1 zu erhöhen, wenn die nächste Ziffer der nichtgerundeten Zahl 5 oder größer ist.

Abrunden: Die letzte Ziffer einer gerundeten Zahl bleibt unverändert, wenn die nächste Ziffer der nichtgerundeten Zahl kleiner als 5 ist.

Beispiele

π = 3,14159265 ... wird durch
3,1416 aufgerundet auf Zehntausendstel,
3,142 aufgerundet auf Tausendstel,
3,14 abgerundet auf Hundertstel,
3,1 abgerundet auf Zehntel.

Signifikante Stellen

Im Bauwesen genügt häufig eine Bestimmung von Zahlenwerten auf drei Stellen genau (Rechenschiebergenauigkeit). Dabei wird nach den vorgenannten Regeln auf- oder abgerundet.

Beispiele

Bei drei signifikanten Stellen wird 3,14159... zu 3,14 143,257 zu 143 344600 zu 345000 4339111 zu 4340000

Zehnerpotenzen

 $0,001 = 10^{-3}$ $1000 = 10^{3}$ $0,01 = 10^{-2}$ $100 = 10^{2}$ $0,1 = 10^{-1}$ $10 = 10^{1}$ $1 = 10^{0}$ $1 = 10^{0}$ $1 000 000 = 10^{6} = 1 Million$

1 000 000 = 10° = 1 Million 10 000 000 = 10⁷ = 10 Millionen 100 000 000 = 10⁸ = 100 Millionen 1 000 000 000 = 10⁹ = 1 Milliarde

Beispiele

10⁻¹ Dezi

 $10^4 = 10 \cdot 10 \cdot 10 \cdot 10 = 10000$ $10^{-4} = 0,0001$ 1 ist die vierte Stelle hinter dem Komma.

= (1/10) m

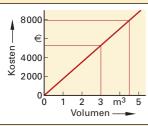
Vorsätze vor Einheiten

= 10 cm $10^{-2} \text{ Centi (c)} \quad 1 \text{ Zentimeter} = (1/100) \text{ m}$ = 1 cm $10^{-3} \text{ Milli (m)} \quad 1 \text{ Millimeter} = (1/1000) \text{ m}$ = 1 mm $10^{-6} \text{ Mikro ($\mu$)} \quad 1 \text{ Mikrometer} = 1 \text{-millionstel}$ Meter

(d) 1 Dezimeter

 10^{-9} Nano (n) 1 Nanometer = 10^{-9} m 10^{-12} Pico (p) 1 Picometer = 10^{-12} m

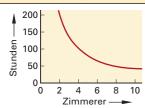
1.2 Recl	henarte	n						
Grundrech	enarten			Sonstige Rechenarten				
Rechenart	а	b	С	Rechenart	а	b	С	
Addition	Summand	Summand	Summen- wert	Poten- zierung	Basis	Exponent	Potenz- wert	
	Beispiel	a + b = c		Beispiel a ^b = c				
Subtraktion	Minuend	Subtra- hend	Differenz- wert	exponent		Wurzel- wert		
	Beispiel	a - b = c		Beispiel				
Multipli- kation	Faktor	Faktor	Produkt- wert	Logarith- mierung	Logarith- mand	Basis	Logarith- muswert	
	Beispiel	a · b = c			Beispiel	log _b a = c		
Division	Dividend	Divisor	Quotien- tenwert	Rechenrege	eln ohne K	lammern		
	Beispiel	a:b=c		Gleichstufige nach rechts a		en werden	von links	
Addition u	nd Multipl	ikation		Beispiel 8 -	- 2 + 3	= 6 + 3	= 9	
Kommutativi	tät	a + b = b + ab = ba		Bei ungleich: chenart höhe				
Assoziativitä	- '	+ b) + c = a + ı · b) · c = a ·	, ,	Beispiel 8 – 2 · 3 = 8 – 6 = 2			_	
Distributivitä	- ($+b) \cdot c = a \cdot (b+c) = a \cdot$		$20:5+3\cdot7=4+21=25$ $14+3\cdot2^3=14+3\cdot8=38$				
Stufen der	Rechenart	ten		Klammerregeln				
Stufe 1	Addit	ion, Subtrakt	ion	Die Rechnung innerhalb einer Klammer wir stets vor der Rechnung außerhalb der Klamme				
Stufe 2	Multi	plikation, Div		ausgeführt. Beispiel $(2 + 9) \cdot 6 = 11 \cdot 6 = 66$			66	
		pa t. 0 , 2	ision	beispiei (2	+ 3) · 0	- 11 0	= 00	
Stufe 3	Poten	zierung, Rad ithmierung		Bei mehrfach nach außen r	ner Klammer unde, eckige	ung werden und geschw	von innen eifte Klam-	
Stufe 3 Beispiele Ad	Poten Logar	zierung, Rad rithmierung		Bei mehrfach	ner Klammer unde, eckige t. Die Klamm	ung werden und geschw	von innen eifte Klam-	
Beispiele A a + (b - c) a - (b + c) a - (b - c) a - (b - c)	Poten Logar ddition, Sub 0 = 0 + a = 0) = a + b - c 0) = a - b + c 0 = a aber	zierung, Rad rithmierung traktion a	lizierung,	Bei mehrfach nach außen r mern benutzt nach außen a Beispiel 2 - 2 - 2 -	ner Klammer unde, eckige t. Die Klamm aufgelöst. (3 + 4 · [26 · (3 + 4 · 12 : 3 19	ung werden und geschw nern werden - 2 · (3 + 4) - 2 · 7] : 3}	von innen eifte Klam- von innen]:3} = = = = 38	
Beispiele Ad	Poten Logar ddition, Sub' 0 = 0 + a = 1) = a + b - c 1) = a - b + c 1) = a - b + c 1) = a - b 1) = a - b 2) = a + b 2) = a + b 3) = -a - b 3) = -a + b 4) = -a - b 3) = -a + b 4) = -a +	zierung, Rad ithmierung traktion a a b c c b c c b c c c b c c c c c c c	lizierung,	Bei mehrfach nach außen r mern benutzt nach außen a Beispiel 2 -4 2 -4	ner Klammer unde, eckige t. Die Klamm aufgelöst. (3 + 4 · [26 · (3 + 4 · 12 : : 19 r Klammer Klammer kan r Klammer kan der Klammer der Klammer	ung werden und geschw hern werden - 2 · (3 + 4) - 2 · 7] : 3} mit PLUS in entfallen mit MINUS nn entfallen er umgekehr er mit Sum	von innen eifte Klam- von innen]:3} =	


Rechenart, Rechenoperation	Formeln und Rechenregeln	Beispiele
Erweitern	$\begin{aligned} & \text{Multiplikation von Z\"{a}hler und Nenner} \\ & \text{mit gleicher Zahl. Wert bleibt gleich} \\ & \frac{a}{b} = \frac{a}{b} \cdot \frac{n}{n} = \frac{a \cdot n}{b \cdot n} \end{aligned}$	$\frac{2}{3} = \frac{2}{3} \cdot \frac{7}{7} = \frac{2 \cdot 7}{3 \cdot 7} = \frac{14}{21}$
Kürzen	Division von Zähler und Nenner durch die gleiche Zahl. Wert bleibt gleich $\frac{a}{b} = \frac{a}{b} \cdot \frac{n}{n} = \frac{a \cdot n}{b \cdot n}$	$\frac{14}{21} = \frac{14}{21} : \frac{7}{7} = \frac{14 : 7}{21 : 7} = \frac{2}{3}$
Hauptnenner (HN) bestimmen	Der Hauptnenner ist das kleinste gemeinsame Vielfache (KgV) der Nenner. Berechnung durch Zerlegung der Nenner in Primfaktoren.	Hauptnenner von $\frac{1}{4}$, $\frac{2}{5}$, $\frac{1}{6}$, $\frac{1}{30}$ $4 = 2 \cdot 2$ 5 = 5 $6 = 2 \cdot 3$ $30 = 2 \cdot 3 \cdot 5$
Addition gleichnamige Brüche ungleichnamige Brüche	$\begin{aligned} &\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b} \\ &\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d}{b \cdot d} + \frac{c \cdot b}{d \cdot b} = \frac{(a \cdot d) + (c \cdot b)}{b \cdot d} \\ &\text{oder nach vorheriger Ermittlung des} \\ &\text{Hauptnenners}. \end{aligned}$	$\frac{5}{8} + \frac{3}{8} = \frac{5+3}{8} = \frac{8}{8} = 1$ $\frac{2}{3} + \frac{1}{5} = \frac{2 \cdot 5}{3 \cdot 5} + \frac{1 \cdot 3}{5 \cdot 3} = \frac{10}{15} + \frac{3}{15} = \frac{13}{15}$ $\frac{1}{4} + \frac{2}{5} + \frac{1}{6} + \frac{1}{30} = \frac{15}{60} + \frac{24}{60} + \frac{10}{60} + \frac{2}{60} = \frac{51}{60}$
Subtraktion gleichnamige Brüche	$\frac{a}{b} - \frac{c}{b} = \frac{a - c}{b}$	$\frac{5}{8} - \frac{3}{8} = \frac{2}{8} = \frac{1}{4}$
ungleichnamige Brüche	$\frac{a}{b} - \frac{c}{d} = \frac{a \cdot d}{b \cdot d} - \frac{c \cdot b}{d \cdot b} = \frac{(a \cdot d)}{b} - \frac{(c \cdot b)}{d}$ oder nach vorheriger Ermittlung des Hauptnenners.	$\begin{vmatrix} \frac{2}{3} - \frac{1}{5} = \frac{2 \cdot 5}{3 \cdot 5} - \frac{1 \cdot 3}{5 \cdot 3} = \frac{10}{15} - \frac{3}{15} = \frac{7}{15} \\ \frac{1}{4} - \frac{2}{5} + \frac{1}{6} - \frac{1}{30} = \frac{15}{60} - \frac{24}{60} + \frac{10}{60} - \frac{2}{60} = -\frac{1}{6} \end{vmatrix}$
Multiplikation Bruch mit Zahl	$\frac{\mathbf{a}}{\mathbf{b}} \cdot \mathbf{n} = \frac{\mathbf{a} \cdot \mathbf{n}}{\mathbf{b}}$	$\frac{3}{8} \cdot 5 = \frac{3 \cdot 5}{8} = \frac{15}{8} = 1\frac{7}{8}$
Bruch mit Bruch	$\frac{\mathbf{a}}{\mathbf{b}} \cdot \frac{\mathbf{c}}{\mathbf{d}} = \frac{\mathbf{a} \cdot \mathbf{c}}{\mathbf{b} \cdot \mathbf{d}}$	$\frac{3}{8} \cdot \frac{2}{5} = \frac{3 \cdot 2}{8 \cdot 5} = \frac{6}{40} = \frac{3}{20}$
Division Bruch durch Zahl	$\frac{a}{b}: n = \frac{a}{b \cdot n}$	$\frac{3}{8}$: 5 = $\frac{3}{8 \cdot 5}$ = $\frac{3}{40}$
Bruch durch Bruch	$\frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$	$\frac{3}{8} : \frac{2}{5} = \frac{3}{8} \cdot \frac{5}{2} = \frac{15}{16}$
Umwandeln gemeiner Bruch in Dezimalzahl	übliches Teilen des Zählers durch den Nenner	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Umwandeln endliche Dezimalbrüche	Erweitern mit 10, 100, 1000 usw., gegebenenfalls anschließend kürzen	$0,375 = \frac{0,375 \cdot 1000}{1000} = \frac{375}{1000} = \frac{3}{8} \cdot \frac{125}{125} = \frac{3}{8}$
reinperiodische Dezimalbrüche unreinperiodische Dezimalbrüche	Rechnung gemäß Beispiel für unreinperiodische Dezimalbrüche	$0,\overline{3} = \frac{3}{9}$ $x = 2,3\overline{42}$ $x = \frac{2319}{990}$ $0,\overline{42} = \frac{42}{99}$ $1000 \cdot x = 2342,\overline{42}$ $-10 \cdot x = -23,\overline{42}$ $990 \cdot x = 2319,00$
Vorzeichenregeln beim Dividieren	$(+ a) : (+ b) = + a : b = + \frac{a}{b}$ $b \neq 0$ $(+ a) : (- b) = - a : b = - \frac{a}{b}$ $b \neq 0$ $(- a) : (- b) = + a : b = + \frac{a}{b}$ $b \neq 0$	$(+3): (+8) = +3:8 = +\frac{3}{8}$ $(+3): (-8) = -3:8 = -\frac{3}{8}$ $(-3): (-8) = +3:8 = +\frac{3}{8}$
Division durch 0	U	0

5

8

Dreisatzrechnung							
Verhältnisse beim Dreisatz	direkter Dreisatz	indirekter Dreisatz					
1. Aussagesatz	$x \Rightarrow y$	$X \Rightarrow Y$					
2. Einheitssatz	$1 \Rightarrow \frac{y}{x}$	$1 \Rightarrow y \cdot x$					
3. Schlusssatz	$x_1 \Rightarrow \frac{y \cdot x_1}{x}$	$x_1 \Rightarrow \frac{y \cdot x}{x_1}$					


Dreisatz mit geradem Verhältnis (direkt oder proportional)

Beispiel 4,50 m³ Eichenholz kosten 7875,00 €. Wieviel kosten 3,00 m³ Eichenholz?

- 1. 4,50 m³ Eichenholz kosten 7875,00 €
- 3. 3,00 m³ Eichenholz kosten $\frac{7875,00 € \cdot 3,00 m³}{4,50 m³}$ = **5250,00** €

Dreisatz mit umgekehrtem Verhältnis (indirekt oder antiproportional)

Beispiel 5 Zimmerer benötigen für eine Montagearbeit 80 Stunden. Wie lange dauert die Montage, wenn 8 Zimmerer zur Verfügung stehen?

- 1. 5 Zimmerer benötigen 80 h
- 2. 1 Zimmerer benötigt 5 · 80 h
- 3. 8 Zimmerer benötigen $\frac{5 \cdot 80 \text{ h}}{8} = 50 \text{ h}$

Zusammengesetzter Dreisatz (doppelter Dreisatz)

Es werden 3 Größen gegenübergestellt. Die gesuchte Größe wird stufenweise errechnet. In jeder Stufe wird nur eine Größe verändert.

Beispiel

6 Zimmerer verlegen bei 8-stündiger Arbeitszeit pro Tag 240 m² Parkett. Wieviel m² Parkett verlegen 5 Zimmerer bei einer Arbeitszeit von 9 h/Tag?

- 1. Dreisatz: 6 Zimmerer verlegen in 8 h 240 m²
 - 1 Zimmerer verlegt in 8 h
 - 5 Zimmerer verlegen in 8 h $\frac{240 \text{ m}^2 \cdot 5}{6}$
- **2. Dreisatz:** 5 Zimmerer verlegen in 1 h $\frac{240 \text{ m}^2 \cdot 5}{6 \cdot 8}$
 - 5 Zimmerer verlegen in 9 h $\frac{240 \text{ m}^2 \cdot 5 \cdot 9}{6 \cdot 8} = 225 \text{ m}^2$

Verhältnisgleichung, Proportionen

Zwei Verhältnisse mit gleichen Werten können gleichgesetzt und als Gleichung geschrieben werden. Das Verhältnis (eine Proportion) kann auch als Bruchgleichung geschrieben werden.

Außenglieder

oder $\frac{a}{b}$ =

Innenglieder Bruchgleichung

Eine Verhältnisgleichung kann als Produktengleichung geschrieben werden.

$$a:b = 3:4$$

oder
$$3 \cdot b = 4 \cdot a$$

1.2 Rechenarten				
Potenzen		Wurzeln		
Definition (Sprechweise: a hoch n)	$a^n = a \cdot a \cdot a \cdot \cdot a$ n Anzahl der Faktoren		$\begin{pmatrix} \binom{n}{\sqrt{a}} \end{pmatrix}^n = a$ $\sqrt{a} = \sqrt[2]{a}$	
Spezialfälle (für a \neq 0 und n \in N*)	$a^1 = a; a^0 = 1$ $1^n = 1; 0^n = 0$	Darstellung mit Bruchpotenzen	$ \sqrt[n]{a} = a^{\frac{1}{n}} $ $ \sqrt[n]{a^{m}} = a^{\frac{m}{n}} = (\sqrt[n]{a})^{m} $	
Potenzen mit negativen Exponenten	$a^{-1} = \frac{1}{a}$; $a^{-n} = \frac{1}{a^n}$	(für a ≥ 0)	$ \sqrt[n]{\frac{m}{\sqrt{a}}} = \sqrt[n]{a^{\frac{1}{m}}} = a^{\frac{1}{m \cdot n}} $	
Vorzeichen beim Potenzieren	$(+a)^n = +a^n$ für alle n $(-a)^n = +a^n$ für gerade n	Produkte von Wurzeln (für $a \ge 0$ und $b \ge 0$)	$ \sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b} $ $ \sqrt[n]{a^m} \cdot \sqrt[n]{a^q} = a^{\frac{m+q}{n}} $	
$\begin{array}{l} \text{(f\"ur } n \in N^*) \\ \\ \text{Summe und} \\ \\ \text{Differenz} \\ \\ \text{von Potenzen} \end{array}$	$(-a)^{n} = -a^{n} \text{ für unger. n}$ $2 \cdot a^{3} + 3 \cdot a^{3} - a^{3} = 4 \cdot a^{3}$ $3 \cdot a^{4} + 4 \cdot a^{2} - 2 \cdot a^{2} =$ $= 3 \cdot a^{4} + 2 \cdot a^{2}$	Eindeutigkeit von Wurzeln (für a ≥ 0)	$ \sqrt[n]{a^n} = a $ $ \sqrt{4} = +2 $ $ \sqrt[3]{27} = +3 $	
Produkt von Potenzen	$a^{m} \cdot a^{n} = a^{m+n}$ $a^{n} \cdot b^{n} = (a \cdot b)^{n}$ $(a^{m})^{n} = a^{m \cdot n}$	 Wurzeln positiver Ra Wurzeln negativer R reellen Zahlenbereic √–5 nicht definiert 	adikanden sind für den	
Quotient von Potenzen	$a^m : a^n = a^{m-n}$ $a^m : b^m = (a : b)^m$	$\sqrt{-6}$ nicht definiert ■ Wurzel aus null ist gleich null $\sqrt{0} = 0$		
Fakultät, Binomial	koeffizient	Beispiel (Hinweis auf	. 7-:-h\	
Binomialkoeffizient:	Fakultät: $n! = 1 \cdot 2 \cdot 3 \cdot \cdot n$. Es gilt $0! = 1$ Binomialkoeffizient: $ \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \text{mit} 0 \le k \le n $		·	
(11)		(nicht x = $\sqrt{3}$ = ± 1,73.	21)	
Binomische Forme	ein	Logarithmen	la management de la constant de la c	
1. binomische Formel	**	Definition	$log_b a = c$, wenn $b^c = a$ für $b > 0$ und $a > 0$	
 binomische Formel binomische Formel 		Brigg'scher (deka- discher) Logarithmus	$\lg a = \log_{10} a$	
Höhere Potenzen		natürlicher Loga- rithmus (logarithmus naturalis)	In a = log _e a mit e = 2,71828	
$(a + b)^3 = a^3 + 3 a^2 b +$ $(a - b)^3 = a^3 - 3 a^2 b +$	$3 ab^2 - b^3$	Spezialfälle	lg 1 = 0; ln 1 = 0 $log_b 1 = 0; log_b b = 1$ lg 10 = 1; ln e = 1	
$(a \pm b)^{n} = a^{n} \pm {n \choose 1} a^{n-3}$ $\pm {n \choose 3} a^{n-3} b^{3}$ Spezialfälle	\	Logarithmengesetze (für alle Basen b > 0)	$\log (ac) = \log a + \log c$ $\log \frac{a}{c} = \log a - \log c$ $\log (a^n) = n \log a$ $\log \sqrt[n]{a} = \frac{1}{n} \log a$	
$a^{3} + b^{3} = (a + b) \cdot (a^{2} - a^{3} - b^{3}) = (a - b) \cdot (a^{2} + a^{4} - b^{4}) = (a^{2} + b^{2}) \cdot (a^{2} + a^{n} - b^{n}) = (a - b) \cdot (a^{n} - b^{n}) = (a - b) $	$ab + b^{2}$) $-b^{2}$) $^{1} + a^{n-2}b + a^{n-3}b^{2}$	Umrechnungen	$\begin{array}{ll} \ln a &= \ln 10 \cdot \lg a \\ \lg a &= \lg e \cdot \ln a \\ \lg e &= M = 0,4343 \\ \ln 10 &= \frac{1}{M} = 2,3026 \\ b^{\log_b a} &= a \\ \log_b (b^n) &= n \end{array}$	

1.3 Prozentrechnung und Zinsrechnung

Prozentrechnung

Rechnen mit reinem Grundwert

- Prozent %

 1/100
- Grundwert G
- Prozentwert PW
- Prozentsatz p (%)

$$G = \frac{PW \cdot 100\%}{p}$$

$$PW = \frac{G \cdot p}{100 \%}$$

$$p = \frac{PW \cdot 100\%}{G}$$

Beispiel

Eiche hat einen tangentialen Schwindverlust von 8,9 %. Um wie viel mm schwindet ein Seitenbrett mit einer Breite b = 320 mm?

Lösuna

$$PW = \frac{320 \text{ mm} \cdot 8.9 \%}{100 \%} = 28,48 \text{ mm}$$

Rechnen mit vermindertem Grundwert

■ Verminderter Grundwert Gmin

Verminderter Grundwert	Prozentwert (PW)		
100 % – p %	р%		
100 % = Grundv	vert (G)		

$$G_{\min} = G - PW$$

$$G = \frac{G_{\min} \cdot 100 \%}{100 \% - p}$$

Beispiel

Ein Kunde bezahlt wegen mangelhafter Arbeit 10 % des Bruttopreises weniger und überweist 16 500,00 €. Wie hoch war der Bruttopreis?

Lösuna

$$G = \frac{16500,00 € \cdot 100 \%}{100 \% - 10 \%} = 18333,33 €$$

Rechnen mit vermehrtem Grundwert

■ Vermehrter Grundwert Gmehr

Grundwert (<i>G</i>)	Prozentwert (PW)			
100 %	р%			
100 % + p % = vermehrter Grundwert				

$$G_{\text{mehr}} = G + PW$$

$$G = \frac{G_{\text{mehr}} \cdot 100 \%}{100 \% + p}$$

Beispiel

Ein Arbeiter erhält nach der Lohnerhöhung von 3,5 % einen Stundenlohn von 13,40 €. Errechnen Sie den vorherigen Lohn?

Lösung

$$G = \frac{13,40 € \cdot 100 \%}{100 \% + 3,5 \%} = 12,95 €$$

Zinsrechnung

- Kapital
- K (€)
- Zinsen
- Z (€)
- Zinssatz
- p (%/Jahr)

- Laufzeit
- t (Jahre)
- 1 Zinsjahr
- 360 Tage
- 1 Zinsmonat 30 Tage

Kapital	Z

Mit dem Zinssatz werden die Zinsen für ein Jahr berechnet.

$$K = \frac{Z \cdot 100 \%}{p \cdot t}$$

$$Z = \frac{K \cdot p \cdot t}{100 \%}$$

$$p = \frac{Z \cdot 100 \%}{K \cdot t}$$

$$t = \frac{Z \cdot 100 \%}{K \cdot p}$$

Ein Betrieb erhält einen Kredit über 40 000,00 € mit Zinssatz von 8,5 %.

- a) Berechnen Sie die Zinsen.
- b) Wie hoch wäre der Zinssatz, wenn bei gleicher Laufzeit 3 700,00 € Zinsen anfallen würden?

Lösung (Berechnung für ein Jahr)

$$Z = \frac{40\,000,00 \, \cdot \, 8,5 \, \%}{100 \, \%} = 3\,400,00 \, \cdot \,$$

$$p = \frac{3700,00 \cdot 100\%}{40000,00} = 9,25\%$$

Zinseszinsrechnung

Die Zinsen werden dem Kapital am Jahresende zugerechnet und mitverzinst.

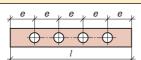
Anzahl der Jahre n

Kapital nach n Jahren:

$$K_n = K \cdot \left(1 + \frac{p}{100}\right)^n$$

Beispiel

Ein Zimmerer legt 5000,00 € festverzinslich mit 4,5 % an. Wie hoch ist sein Kapital nach 10 Jahren?


Lösung

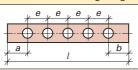
$$K_{10} = 5000,000 € \cdot \left(1 + \frac{4,5 \%}{100 \%}\right)^{10} = K_{10} = 7764,85 €$$

1.4 Längen und Winkel

Längenteilung

Teilen der Gesamtlänge in gleiche Abstände

$$e = \frac{l}{n+1}$$

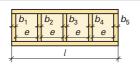

$$z = n + 1$$

l	Gesamtlänge,	Teilungsstrecke
---	--------------	-----------------

e Länge der Abstände

n Anzahl der Teilungselementez Anzahl der Abstände

Teilen der Gesamtlänge in gleiche Abstände mit Randabstand

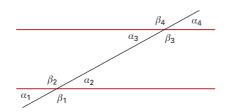

$$e = \frac{l - (a + b)}{n - 1}$$

a, bRandabständelGesamtlänge, Teilungsstrecke

Länge der Abstände

n Anzahl der Teilungselemente

Teilen der Gesamtlänge in gleiche Abstände mit Unterbrechungen


$$e = \frac{l - (b_1 + ... + b_n)}{n - 1}$$

b₁, ..., b_n Unterbrechungen
 l Gesamtlänge, Teilungsstrecke
 e Länge der Abstände

n Anzahl der Teilungselemente

Winkel

Winkelarten

Scheitelwinkel sind gleich groß.

Scheitelwinkel liegen am Winkelscheitel einander gegenüber.

$$\alpha_1 = \alpha_2$$

 $\alpha_3 = \alpha_4$

Wechselwinkel sind gleich groß.

Wechselwinkel an geschnittenen Parallelen liegen dem Winkel auf der anderen Seite gegenüber.

$$\alpha_1 = \alpha_4$$

 $\beta_1 = \beta_4$

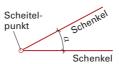
Stufenwinkel sind gleich groß.

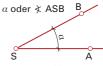
Stufenwinkel liegen auf der anderen Stufe der gleichen Seite der Geraden.

$$\alpha_1 = \alpha_3$$

 $\beta_1 = \beta_3$

Nebenwinkel ergänzen sich zu 180°.


Nebenwinkel sind Nachbarwinkel auf der selben Seite der Parallelen.


$$\alpha_1 + \beta_1 = 180^{\circ}$$

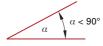
 $\alpha_4 + \beta_4 = 180^{\circ}$

Winkeleinheiten

Zwei von einem Punkt ausgehende Halbgeraden bilden einen Winkel. Die Benennung erfolgt mit griechischen Buchstaben α , β , γ .

Die Einheiten der Winkel sind Grad (°), Minuten (′) und Sekunden (′′). Es gelten die selben Regeln wie bei den Zeiteinheiten.

Umrechnung


1° = 60′

1' = 60''

0,5666° = 0,5666° · 60′/je 1° 21′ = 21′ : 60′/je 1°

→ 34′ → 0.35°

Winkelbenennungen

Spitzer Winkel

α = 90°

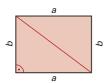
Rechter Winkel (R)

Stumpfer Winkel

Überstumpfer Winkel

1.5 Flächen

Quadrat


- A Fläche
- Seitenlänge
- Diagonalenlänge
- **U** Umfang

$$A = a \cdot a = a^2$$

$$U = 4 \cdot a$$

$$d = \sqrt{2} \cdot a \approx 1,414 \cdot a$$

Rechteck

- A Fläche
- a Länge (Grundlinie)
- b Breite (Höhe)
- d Diagonalenlänge
- U Umfang

$$A = a \cdot b$$

(Fläche = Grundlinie mal Höhe)

$$U = 2 \cdot (a+b)$$

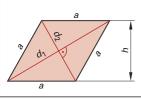
$$d = \sqrt{a^2 + b^2}$$

Dreieck

- Fläche
- a, b, c Seitenlängen Grundlinie
- Höhe h_c
- Umfang
- halber Umfang
- ► S. 20, 25 ... 28

 $A = \frac{1}{2} \cdot c \cdot h_{c}$

(Fläche = $\frac{1}{2}$ mal Grundlinie mal Höhe)


$$s = \frac{1}{2} \cdot (a + b + c)$$

$U = a + b + c = 2 \cdot s$

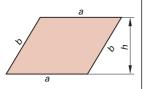
Heron'sche Formel:

$$A = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$$

Rhombus, Raute

- Α Fläche
- а Seitenlänge (Grundlinie)
 - Höhe
- d₁, d₂ Diagonalenlängen
- Umfang
- $d_1 \perp d_2$

Α


 $A = a \cdot h$

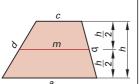
$$A = \frac{1}{2} \cdot d_1 \cdot d_2$$

 $a = \frac{1}{2} \cdot \sqrt{d_1^2 + d_2^2}$

$$U = 4 \cdot a = 2 \cdot \sqrt{d_1^2 + d_2^2}$$

Parallelogramm

- Fläche
- a, b Seitenlängen
- Grundlinie а
 - Höhe
- Umfang


 $A = a \cdot h$

(Fläche = Grundlinie mal Höhe)

$$U = 2 \cdot (a+b)$$

 $A=m\cdot h=\frac{a+c}{2}\cdot h$

Trapez

- Fläche
- a, b, c, d Seitenlängen
 - mittlere Länge
- Höhe h
 - Umfang
 - Flächenschwerpunkt ► S. 20

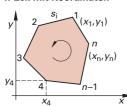
$$U=a+b+c+d$$

 $m = \frac{a+c}{2}$

1	7	
	۰	-

.5 Flächen							
Rechtwinkliges Dreieck	 A Fläche a, b Katheten c Hypotenuse p, q Hypotenusenabschnitte h Höhe U Umfang 	$A = \frac{1}{2} \cdot a \cdot b = \frac{1}{2} \cdot c \cdot h$ Satz des Pythagoras: $a^2 + b^2 = c^2$ Sätze des Euklid: $a^2 = p \cdot c \qquad \text{(Kathetensatz)}$ $b^2 = q \cdot c \qquad \text{(Kathetensatz)}$ $h^2 = p \cdot q \qquad \text{(Höhensatz)}$ $U = a + b + c$					
Gleichschenkliges Dreieck	A Fläche s Schenkellänge c Grundlinie h Höhe U Umfang	$A = \frac{1}{2} \cdot c \cdot h$ $A = \frac{1}{4} \cdot c \cdot \sqrt{4 \cdot s^2 - c^2}$ $h = \frac{1}{2} \cdot \sqrt{4 \cdot s^2 - c^2}$ $U = 2 \cdot s + c$					
Gleichseitiges Dreieck	A Fläche a Seitenlänge h Höhe U Umfang Flächen- schwerpunkt	$A = \frac{1}{2} \cdot a \cdot h = \frac{\sqrt{3}}{4} \cdot a^2 \approx 0,433 \cdot a^2$ $h = \frac{\sqrt{3}}{2} \cdot a \approx 0,866 \cdot a$ $U = 3 \cdot a$					
Unregelmäßiges S_4 Vieleck A_2 A_3 A_4 A_4 A_5 A_6 A_6 A_6 A_7 A_8 A_8	$A = A_1 + A_2 + + A_m$ $U = s_1 + s_2 + + s_n$ \triangleright S. 19						
Regelmäßiges Vieleck 4 3	A Fläche a Seitenlänge R Umkreisradius	$A = \frac{1}{2} \cdot n \cdot a \cdot r$ $R = \frac{1}{2} \cdot \sqrt{a^2 + 4r^2}$					

	a contornarigo
A S	R Umkreisradius
n-1	r Inkreisradius
a	n Anzahl der Ecken
$n \longrightarrow 1$	<i>U</i> Umfang


Reg	Regelmäßige <i>n</i> -Ecke (Vielecke) Konstruktion ► Kapitel 7								apitel 7.5
n	$\frac{A}{a^2}$	$\frac{A}{R^2}$	$\frac{A}{r^2}$	<u>a</u> R	<u>a</u> r	R _a	$\frac{R}{r}$	<u>r</u> a	$\frac{r}{R}$
3	0,433 0	1,299 0	5,196 2	1,732 1	3,464 1	0,577 4	2,000 0	0,288 7	0,500 0
4	1,000 0	2,000 0	4,000 0	1,414 2	2,000 0	0,707 1	1,414 2	0,500 0	0,707 1
5	1,720 5	2,377 6	3,632 7	1,175 6	1,453 1	0,850 7	1,236 1	0,688 2	0,809 0
6	2,598 1	2,598 1	3,464 1	1,000 0	1,154 7	1,000 0	1,154 7	0,866 0	0,866 0
7	3,633 9	2,736 4	3,371 0	0,867 8	0,963 1	1,152 4	1,109 9	1,038 3	0,901 0
8	4,828 4	2,828 4	3,313 7	0,765 4	0,828 4	1,3066	1,0824	1,2071	0,9239
9	6,181 8	2,892 5	3,275 7	0,684 0	0,727 9	1,461 9	1,064 2	1,373 7	0,939 7
10	7,694 2	2,938 9	3,249 2	0,618 0	0,649 8	1,618 0	1,051 5	1,538 8	0,951 1
12	11,196	3,000 0	3,215 4	0,517 6	0,535 9	1,931 9	1,035 3	1,866 0	0,965 9
15	17,642	3,050 5	3,188 3	0,415 8	0,425 1	2,404 9	1,022 3	2,352 3	0,978 1
16	20,109	3,061 5	3,182 6	0,390 2	0,397 8	2,562 9	1,019 6	2,513 7	0,980 8
20	31,569	3,090 2	3,167 7	0,312 9	0,316 8	3,196 2	1,012 5	3,156 9	0,987 7

 $U = n \cdot a$

Dr	eieck mit Koordinaten
у	$\begin{cases} 1 & (x_1, y_1) \\ \emptyset & \end{cases}$

- Α Fläche
- Seitenlängen Si (i = 1, 2, 3)
- (xi, vi) Koordinaten der Eckpunkte (i = 1, 2, 3)
- Umfang
- Eckpunktenummerierung im Gegenuhrzeigersinn
- $A = \frac{1}{2} \cdot [(x_1 \cdot y_2 x_2 \cdot y_1) + (x_2 \cdot y_3 x_3 \cdot y_2)]$
- $s_1 = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- $s_2 = \sqrt{(x_3 x_2)^2 + (y_3 y_2)^2}$
- $s_3 = \sqrt{(x_1 x_3)^2 + (v_1 v_3)^2}$ $U = S_1 + S_2 + S_3$

n-Eck mit Koordinaten

- Fläche
- Seitenlängen (xi, yi) Koordinaten der Eckpunkte
- (i = 1, 2, ..., n)
- Umfana

Eckpunktenummerierung im Gegenuhrzeigersinn

Gauß'sche Flächenformeln:

$$A = \frac{1}{2} \cdot \sum y_i \cdot (x_{i-1} - x_{i+1})$$

 $A = \frac{1}{2} \cdot \sum x_{i} \cdot (y_{i+1} - y_{i-1})$

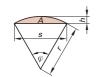
(für i = 1 ist i - 1 = n zu setzen) $(f\ddot{u}r i = n \text{ ist } i + 1 = 1 \text{ zu setzen})$

 $S_i = \sqrt{(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2}$ $U = S_1 + S_2 + ... + S_n$

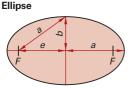
Kreis

- A Fläche
- Radius (Halbmesser)
- d Durchmesser
- U Umfana
- M Kreismittelpunkt
- $A = \pi \cdot r^2 = \frac{1}{4} \pi \cdot d^2$
- $d = 2 \cdot r$
- $U = 2 \cdot \pi \cdot r = \pi \cdot d$

Kreisring


- Außenradius Innenradius
- Kreisringdicke
- A = A_{Außenkreis} A_{Innenkreis}
- $A = (R^2 r^2) \cdot \pi$
- s = R r

Kreisausschnitt



- Fläche (Kreisausschnitt)
- Radius
- Sehnenlänge
- b Bogenlänge
- Zentriwinkel im Bogenmaß
- (Radiant, Einheit: 1 rad)
- φ° Zentriwinkel im Altgradmaß
- $A = \frac{1}{2} \cdot b \cdot r \qquad h = 2 r \cdot \sin^2\left(\frac{\varphi}{4}\right)$
- $b = \varphi \cdot r = \frac{\varphi^{\circ}}{180^{\circ}} \pi \cdot r$
- $s = 2 \cdot r \cdot \sin\left(\frac{\varphi}{2}\right)$ $\varphi^{\circ} = \frac{b \cdot 180^{\circ}}{\pi}$
- $s = 2 \cdot \sqrt{h \cdot (2 \cdot r + h)}$

Kreisabschnitt

- Halbmesser
- Bogenhöhe
- Sehnenlänge
- A Fläche des Kreisabschnitts
- Bogenmaß
- Zentriwinkel im Altgradmaß
- $h = 2 \cdot r \cdot \sin^2\left(\frac{\varphi}{A}\right)$ $r = \frac{s^2}{8 \cdot h} + \frac{h}{2}$
- $s = 2 \cdot r \cdot \sin\left(\frac{\varphi}{2}\right)$
- $A = \frac{r^2}{2} \cdot \left(\pi \cdot \frac{\varphi^{\circ}}{180^{\circ}} \sin \varphi \right)$
- $A \approx \frac{2}{3} \cdot s \cdot h$

- A Fläche
- großer Achshalbmesser
- b kleiner Achshalbmesser
- Brennpunktabstand
- U Umfang
- Brennpunkte

- $A = \pi \cdot a \cdot b$
- $e = \sqrt{a^2 b^2}$
- $U \approx \pi \cdot (a+b)$
- $U = \pi \cdot (a + b) \cdot \left(1 + \frac{1}{4}\lambda^2 + \frac{1}{64}\lambda^4 + ...\right)$
- mit $\lambda = \frac{a-b}{a+b}$

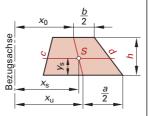
2

5

7

2

5

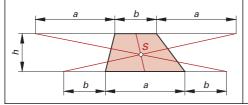

Flächen und Schwerpunkte

Die untenstehende Tabelle weist den Schwerpunkt S von in der Technik häufig benötigten Flächen aus. Die Achsen z und y sind in der Technik üblich.

aus. Die Adisenzuna y sina in der Teelmik abnen.								
Querschnitt	е	Α	I_{Y}	Iz	W_{y}	Beispiel		
<u>b</u>		erpunkt, I _y gheitsmor		Å Z				
	<u>h</u> 2	b·h	<u>b ⋅ h³</u> 12	<u>h ⋅ b³</u> 12	<u>b ⋅ h²</u> 6	σ		
2 2 7	$\frac{\sqrt{2} \cdot h}{2}$	h²	<u>h</u> ⁴ 12	<u>h</u> ⁴ 12	$\frac{\sqrt{2} \cdot h^3}{12}$	$\frac{N}{N}$ $\frac{1}{N}$ $\frac{3}{V}$ $\frac{V_1}{V_2}$ (cm)		
3	2 · h 3	<u>b ⋅ h</u> 2	<u>b ⋅ h³</u> 36	<u>h ⋅ b³</u> 48	$W_{yo} = \frac{b \cdot h^2}{24}$	$y_{s} = \frac{A_{1} \cdot y_{1} + A_{2} \cdot y_{2}}{A_{1} + A_{2}}$ $y_{s} = \frac{5 \cdot 0.5 + 24 \cdot (1 + 1.5)}{29}$ $y_{s} = 2.16 \text{ cm}$		
4	r <u>d</u> 2	$\frac{\pi \cdot r^2}{\frac{\pi \cdot d^2}{4}}$	$\frac{\pi \cdot r^4}{4}$ $\frac{\pi \cdot d^4}{64}$	$\frac{\pi \cdot r^4}{4}$ $\frac{\pi \cdot d^4}{64}$	$\frac{\pi \cdot r^3}{4}$ $\frac{\pi \cdot d^3}{32}$	$z_{s} = \frac{A_{1} \cdot z_{1} + A_{2} \cdot z_{2}}{A_{1} + A_{2}}$ $z_{s} = \frac{5 \cdot 2.5 + 24 \cdot 4}{29}$ $z_{s} = 3.74 \text{ cm}$		

Schwerpunktabstände Trapez

Der Abstand x_s und y_s des Gesamtschwerpunktes S wird rechnerisch mit Hilfe des Momentensatzes ermittelt.



Schwerpunktabstände

$$y_{s} = \frac{h}{3} \cdot \frac{a+2b}{a+b}$$

$$x_s = x_u - \frac{x_u - x_o}{3} \cdot \frac{a+2b}{a+b}$$

Zeichnerisch lässt sich der Schwerpunkt des Trapezes mittels "verschränkter" Diagonalen bestimmen.

Zusammengesetzte Querschnitte

Fläche (Summe aller Teilflächen)

$$A = \sum_{i=1}^{n} A_i$$

Flächenmoment ersten Grades

$$S_{\bar{y}} = \sum_{i=1}^{n} A_{i} \cdot \bar{z}_{Si}$$
$$S_{\bar{z}} = \sum_{i=1}^{n} A_{i} \cdot \bar{y}_{Si}$$

Schwerpunktkoordinaten

$$\bar{y}_S = \frac{S_{\bar{z}}}{A} \quad \bar{z}_S = \frac{S_{\bar{y}}}{A}$$

Trägheitsradius

$$i_{y} = \sqrt{\frac{I_{y}}{\Delta}}$$
 $i_{z} = \sqrt{\frac{I_{z}}{\Delta}}$

Flächenmomente zweiten Grades (Satz von Steiner)

$$I_{y} = \sum_{i=1}^{n} (I_{yi} + A_{i} \cdot z \S_{i})$$

 $I_z = \sum_{i=1}^n (I_{zi} + A_i \cdot y_{si}^2)$

(Deviationsmoment)
$$I_{yz} = \sum_{i=1}^{n} (I_{yzi} - A_i \cdot y_{Si} \cdot z_{Si})$$

Mit dem Fußzeiger i werden die Einzelquerschnitte benannt. Es sind \bar{y}_{S_i} und \bar{z}_{S_i} die Schwerpunktkoordinaten der Einzelquerschnitte.