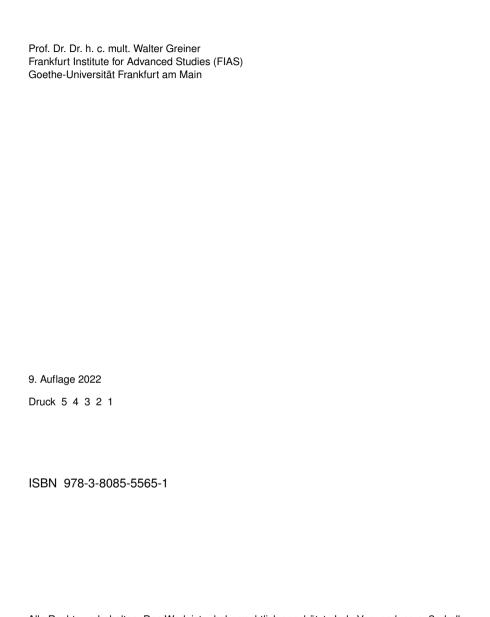
Klassische Mechanik I

Kinematik und Dynamik der Punktteilchen Relativität

Klassische Mechanik I

Kinematik und Dynamik der Punktteilchen Relativität


von

Walter Greiner

9., aktualisierte Auflage

VERLAG EUROPA-LEHRMITTEL · Nourney, Vollmer GmbH & Co. KG Düsselberger Straße 23 · 42781 Haan-Gruiten

Europa-Nr.: 55644

Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Jede Verwendung außerhalb der gesetzlich geregelten Fälle muss vom Verlag schriftlich genehmigt werden.

Alle Abbildungen wurden nach Entwürfen des Autors vom Verlag erstellt.

© 2022 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten www.europa-lehrmittel.de

Satz: Satzherstellung Dr. Naake, 09212 Limbach-Oberfrohna Umschlaggestaltung: braunwerbeagentur, 42477 Radevormwald

Druck: Totem, 88–100 Inowrocław (Polen)

Theoretische Physik

von Prof. Dr. Dr. h. c. mult. Walter Greiner

Seit vielen Jahren zählen die Bände der Reihe *Theoretische Physik* zu den weltweit geschätzten und wegweisenden Lehrbüchern, mit denen Generationen von Studierenden ihre Physikausbildung erfolgreich gestaltet haben. Damit führt Prof. Dr. Dr. h. c. mult. Walter Greiner die Tradition der klassischen Buchreihen von Sommerfeld, von Planck und von Landau und Lifschitz fort, einen zusammenhängenden Blick auf das große Wissenschaftsfeld der Physik zu geben. Englische, französische, japanische und chinesische Ausgaben untermauern die Bedeutung des Werkes *Theoretische Physik*.

Auf über 7000 Seiten lehrt Walter Greiner, der Herausgeber und Hauptautor, Physik mit einem eigenständigen, didaktisch geschickten Konzept: Vermittlung der theoretischen Grundlagen und deren Anwendung anhand vieler ausführlicher Beispiele und Aufgaben mit ausgearbeiteten Lösungen – insbesondere auch zu aktuellen Themen. Denn nichts ist für den Studierenden von größerer Bedeutung, als im Detail zu erleben, wie die theoretischen Konzepte und Werkzeuge auf konkrete Probleme angewandt werden, die für den arbeitenden Physiker von Interesse sind. Walter Greiner begleitet seine Ausführungen mit einer sorgfältigen Entwicklung der benötigten mathematischen Methoden. Biografische und geschichtliche Notizen schlagen die Brücke zu den Wegbereitern der modernen Physik.

So entstand ein lebendiges Konzept von integrierten Lehr- und Übungsbüchern. Pragmatisch orientiert, aber ohne Abstriche an der theoretischen Grundlegung des Stoffes, gelingt es Walter Greiner, den Lernenden einen schnellen Zugang zum theoretisch-physikalischen Denken zu ebnen und sie für die physikalische Wissenschaft zu begeistern.

Mit dem Band Klassische Mechanik I: Kinematik und Dynamik der Punktteilchen – Relativität (vormals Mechanik I) beginnt der Einstieg in die Welt der Theoretischen Physik.

Vorwort

Eine zeitgemäße und moderne Universitäts-Ausbildung in Physik sollte möglichst von Anfang an die Theoretische Physik als einen der Grundpfeiler dieser Wissenschaft berücksichtigen. Diese Überlegung führte dazu, dass Studierenden der Physik und Mathematik an der Goethe-Universität in Frankfurt am Main die Kurse zur Theoretischen Physik ab dem ersten Semester angeboten werden. Die vorliegende *Klassische Mechanik I* ist aus Vorlesungen hervorgegangen, die sich in vielen Jahren – seit 1965 – als Teil dieses Studienprogramms bewährt haben. Sie behandeln als Einstieg in die Theoretische Physik die Newtonsche Mechanik und deren Erweiterung zur Einsteinschen Speziellen Relativitätstheorie.

Ich habe versucht, die Darstellung des Stoffes so interessant und verständlich wie möglich zu gestalten. Der Text wird daher mit vielen Beispielen und Übungen ergänzt, die bis ins Detail ausgearbeitet sind. Damit soll das Buch für interessierte Leserinnen und Leser auch zum Selbststudium geeignet sein.

Der Einstieg in die Theoretische Physik im ersten Semster bedingt, dass dabei großes Gewicht auf die Behandlung elementarer mathematischer Verfahren aus der Vektoralgebra und -analysis sowie der Theorie der linearen Differenzialgleichungen gelegt werden muss. So gesehen ist die *Klassische Mechanik I* auch ein Vorkurs zur Theoretischen Physik.

Die Newtonsche Mechanik wird ausgehend von den Newtonschen Axiomen behandelt. Fragen der Statik und Dynamik werden untersucht, und mit dem Newtonschen Gravitationsgesetz eröffnet sich ein weites Feld astronomischer Phänomene, die mit den erarbeiteten Methoden behandelt werden können. So lassen sich die Bewegungen der Planeten im Sonnensystem oder von Raumsonden auf ihrem Weg durch das Sonnensystem genau berechnen. Viele ausgearbeitete Beispiele und Aufgaben behandeln diese Themen. Dabei lässt sich bereits mit recht elementaren Voraussetzungen ein Bogen zu spannenden Problemen der aktuellen Forschung schlagen, zum Beispiel zur Suche nach Planeten außerhalb unseres Sonnensystems.

Den kurzen Abriss über unser Sonnensystem, mit dem die Darstellung der Newtonschen Gravitationstheorie traditionell abgerundet wird, habe ich zu einem längeren Kapitel über die Stellung unserer Erde im Universum erweitert. Hier werden aktuelle Themen der Forschung vorgestellt, wie die Erforschung des Sonnensystems, die Suche nach extrasolaren Planeten, die Dynamik von Galaxien und das Problem der Dunklen Materie und schließlich das Urknall-Modell zur Entstehung und Entwicklung des Universums. Diese spannenden Themen sollen Neugierde wecken auf die vielen aufregenden Fragen der gegenwärtigen Forschung, zu denen

 aufbauend auf empirischem Wissen – mit den Methoden der Theoretischen Physik Antworten gefunden werden können. Die Bestimmung der Masse des im Jahr 2005 entdeckten Planeten Eris zeigt, dass hierbei auch elementare Verfahren, die in diesem Buch ausführlich behandelt werden, gewinnbringend zum Einsatz kommen.

Eine Vielzahl von Experimenten führte gegen Ende des 19. Jahrhunderts zu der verblüffenden Einsicht, dass die Ausbreitungsgeschwindigkeit des Lichtes vollkommen unabhängig davon ist, ob sich die Lichtquelle oder der Beobachter relativ zueinander bewegen. Dies ließ sich im Rahmen der Newtonschen Mechanik nicht verstehen und führte Albert Einstein zur Speziellen Relativitätstheorie, die die Newtonsche Theorie erweitert und als Spezialfall umfasst. Ausgehend von einer Diskussion des Versuchs von Michelson und Morley entwickeln wir die Spezielle Relativitätstheorie und gelangen über den Formalismus von Minkowski zur relativistischen Mechanik. Wieder runden viele Beispiele, etwa zum Aussehen schnell bewegter Körper und Anwendungen aus der Hochenergie-Physik, die Darstellung ab.

Ich hoffe, ja ich bin überzeugt, damit Interesse für die vielfältigen und teilweise neuen Aspekte zu wecken, die selbst ein so klassisches Gebiet wie die Mechanik noch immer bereit hält. Die Studierenden sollen die Theoretische Physik als eine aufregende und spannende Wissenschaft erleben, bei der noch viel zu entdecken bleibt.

Walter Greiner

Die Mitarbeiter

An den bisherigen Auflagen haben im Laufe der Jahre viele ehemalige Studierende, Doktoranden und Assistenten mitgearbeitet:

8. Auflage (2008)

Dr. Stefan Scherer

7. Auflage (2003)

Dipl.-Phys. Kristof Balasz, Dipl.-Phys. Stefan Scherer

6. Auflage (1992)

Dipl.-Phys. J. Augustin, Dipl.-Phys. Ch. Best, A. Bischoff, A. Dumitru ¹⁾, Dipl.-Phys. B. Ehrnsperger, Dipl.-Phys. O. Graf, Dipl.-Phys. K. Griepenkerl, Dipl.-Phys. A. von Keitz, Dr. G. Peilert, Dipl.-Phys. M. Vidović

Frau A. Steidl

sowie

5. Auflage (1989)

Dipl.-Phys. Carsten Greiner²⁾, Dr. Martin Greiner³⁾, Dipl.-Phys. R. Heuer, Dr. G. Plunien, Dr. M. Rufa

4. Auflage (1984)

Carsten Greiner²⁾, Dr. M. Seiwert

3. Auflage (1980)

Dipl.-Phys. M. Seiwert, Carsten Greiner²⁾, Martin Greiner³⁾ sowie

Frau B. Utschig

¹⁾ später Professor an der Goethe-Universität Frankfurt am Main

²⁾ später Professor an der Goethe-Universität Frankfurt am Main

³⁾ später Professor an der Aarhus University

2. Auflage (1976)

Frau R. Lasarzig, Frau B. Utschig, G. Terlecki 1)

1. Auflage (1974)

Dr B Fricke²⁾

mit

H. Betz³⁾, W. Betz, G. Binnig⁴⁾, M. Bundschuh, C. von Charzewski,

J. von Czarnecki, R. Fickler, H. R. Fiedler, E. Hoffmann, L. Kohaupt 5), N. Krug,

P. Kurowski, B. Moreth, R. Mörschel, B. Müller⁶⁾, J. Rafelski⁷⁾, J. Reinhardt,

H. Schaller, H. J. Scheefer, M. Soffel⁸⁾, K. E. Stiebing, E. Stämmler,

H. Störmer⁹⁾, J. Wagner, R. Zimmermann

sowie

Frau M. Knolle, Frau R. Lasarzig, G. Terlecki, Frau B. Utschig

¹⁾ später Professor an der Fachhochschule Kaiserslautern

²⁾ später Professor an der Universität Kassel

³⁾ Wir gedenken besonders Frau Helga Rafelski, geborene Betz, die in Tucson/Arizon im Alter von 50 Jahren allzu früh an Leukämie verstorben ist.

⁴⁾ Gerd Binnig erhielt 1986 für die Entwicklung des Raster-Tunnel-Mikroskopes zusammen mit H. Rohrer und E. Ruska den Nobelpreis für Physik. Er ist später IBM-Fellow am IBM-Forschungslabor Rüschlikon/Schweiz und Professor an der Universität in München.

⁵⁾ später Professor an der Technischen Fachhochschule Berlin

⁶⁾ später Professor an der Duke University, Durham, North Carolina, USA, dort Dean of the Faculty

⁷⁾ später Professor an der University of Arizona, Tucson, Arizona, USA

⁸⁾ später Professor an der Technischen Universität Dresden

⁹⁾ später Professor an der Columbia University, New York, USA. Er erhielt 1998 den Nobelpreis für Physik gemeinsam mit Daniel C. Tsuifür die Entdeckung des gebrochenzahligen Quanten-Hall-Effekts.

Inhaltsverzeichnis

ı	Vek	torrechnung 1
	1	Einführung und Grunddefinitionen
	2	Das Skalarprodukt
	3	Komponentendarstellung eines Vektors 6
	4	Das Vektorprodukt (axialer Vektor) 9
	5	Das Spatprodukt
	6	Anwendung der Vektorrechnung
	7	Differenziation und Integration von Vektoren
	8	Das begleitende Dreibein – Frenetsche Formeln 41
	9	Flächen im Raum
	10	Koordinatensysteme
	11	Vektorielle Differenzialoperationen
	12	Bestimmung von Linienintegralen
	13	Die Integralsätze von Gauß und Stokes
	14	Berechnung von Oberflächenintegralen
	15	Volumen-(Raum-)Integrale
П	Nev	vtonsche Mechanik
	16	Die Newtonschen Axiome
	17	Grundbegriffe der Mechanik
	18	Die allgemeine lineare Bewegung
	19	Der freie Fall
	20	Die Reibung
	21	Der harmonische Oszillator
	22	Mathematische Zwischenbetrachtung
		(Reihenentwicklung, Eulersche Formeln)193
	23	Der gedämpfte harmonische Oszillator
	24	Das Pendel
	25	Mathematische Vertiefung: Differenzialgleichungen
	26	Planetenbewegungen
	27	Spezielle Probleme in Zentralfeldern
	28	Die Erde und unser Sonnensystem
Ш	Rela	ativitätstheorie
	29	Relativitätsprinzip und Michelson-Versuch
	30	Die Lorentz-Transformation
	31	Eigenschaften der Lorentz-Transformation
	32	Additionstheorem der Geschwindigkeiten

viii Inhaltsverzeichnis

Sachwortverzeichnis			
	34	Anwendungen der speziellen Relativitätstheorie	. 439
	33	Die Grundgrößen der Mechanik im Minkowski-Raum	. 404

Aufgaben und Beispiele

A	3.1	Addition und Subtraktion von Vektoren	8
A	4.1	Vektorprodukt	15
A	4.2	Beweis von Determinantenregeln	15
A	4.3	Determinanten	17
В	4.1	Laplacescher Entwicklungssatz	18
A	6.1	Abstandsvektor	21
A	6.2	Projektion eines Vektors auf einen anderen	22
A	6.3	Geraden- und Ebenengleichung	22
В	6.1	Der Kosinussatz	23
В	6.2	Der Satz von Thales	23
В	6.3	Die Drehmatrix	24
A	6.4	Überlagerung von Kräften	26
В	6.4	Gleichgewichtsbedingung für einen starren Körper ohne feste	
		Drehachse	27
A	6.5	Kraft und Drehmoment	28
A	6.6	Stabkräfte im Dreibock	30
A	6.7	Gesamtkraft und Drehmoment	31
В	7.1	Differenziation eines Vektors	33
В	7.2	Differenziation eines Produktes aus Skalar und Vektor	35
A	7.1	Geschwindigkeit und Beschleunigung auf einer Raumkurve	36
В	7.3	Kreisbewegung	36
В	7.4	Schraubenlinie	37
В	7.5	Integration eines Vektors	39
A	7.2	Integration eines Vektors	39
A	7.3	Bewegung auf einer Raumkurve	39
A	7.4	Flugzeug landet auf spezieller Raumkurve	41
A	8.1	Krümmung und Torsion	47
В	8.1	Frenetsche Formeln am Kreis	48
В	8.2	Begleitendes Dreibein und Schraubenlinie	49
В	8.3	Evolvente eines Kreises	53
A	8.2	Bogenlänge	53
В	8.4	Verallgemeinerung der Evolute	54
В	9.1	Normalenvektor einer Fläche im Raum	58
A		$\label{prop:condition} Zur\ Geschwindigkeit\ und\ Beschleunigung\ in\ Zylinderkoordinaten\ .\ .$	69
A		Darstellung eines Vektors in Zylinderkoordinaten	71
Α	10.3	Winkelgeschwindigkeit und Radialbeschleunigung	71

Α	11.1	Gradient eines Skalarfeldes	. 80
A	11.2	Bestimmung des Skalarfeldes aus dem zugehörigen Gradientenfeld	. 81
A	11.3	Divergenz eines Vektorfeldes	. 81
A	11.4	Rotation eines Vektorfeldes	. 81
A	11.5	Elektrische Feldstärke, elektrisches Potenzial	. 82
A	11.6	Differenzialoperationen in Kugelkoordinaten	. 83
		Reziprokes Dreibein	
A	11.8	Reziproke Koordinatensysteme	. 89
В	12.1	Linienintegral über ein Vektorfeld	. 100
A	13.1	Wegunabhängigkeit eines Linienintegrals	. 107
A	13.2	Bestimmung der Potenzialfunktion	. 109
A	13.3	Wirbelfluss eines Kraftfeldes durch eine Halbkugel	. 110
A	13.4	Zum konservativen Kraftfeld	. 112
В	14.1	Zur Berechnung eines Oberflächenintegrals	. 114
A	14.1	Fluss durch eine Oberfläche	. 115
В	15.1	Berechnung eines Volumenintegrals	. 118
A	15.1	Berechnung einer Gesamtkraft aus der Kraftdichte	. 119
A	16.1	Einfache Seilrolle	. 124
A	16.2	Doppelte Seilrolle	. 124
В	17.1	Potenzielle Energie	. 129
A	17.1	Impulsstoß durch zeitabhängiges Kraftfeld	. 131
A	17.2	Kraftstoß	. 132
A	17.3	Das ballistische Pendel	. 133
		Kräfte bei der Bewegung auf einer Ellipse	
A	17.4	Berechnung von Drehimpuls und Drehmoment	. 139
A	17.5	Nachweis, dass ein gegebenes Kraftfeld konservativ ist	. 140
A	17.6	Kraftfeld, Potenzial, Gesamtenergie	. 140
A	17.7	Impuls und Kraft am Rammpfahl	. 141
В	17.3	Elementare Betrachtungen über Scheinkräfte	. 142
		Bewegung einer Masse im konstanten Kraftfeld	
		Bewegung auf einer Schraubenlinie im Schwerefeld	
A		Raumschiff umkreist Erde	
		Freier Fall mit Reibung nach Stokes	
		Der schräge Wurf mit Reibung nach Stokes	
		Freier Fall mit Newtonscher Reibung	
		Bewegung einer Lokomotive mit Reibung	
		Die schiefe Ebene	
		Zwei Massen auf schiefen Ebenen	
		Eine Kette rutscht vom Tisch	
		Eine Scheibe auf Eis – der Reibungskoeffizient	
		Ein Autounfall	
		Ein Teilchen auf einer Kugel	
		Eine Leiter lehnt an einer Wand	
Α	20.9	Fine Masse rutscht unter Haft- und Gleitreibung	179

		Amplitude, Frequenz und Periode einer harmonischen Schwingung	
		Masse hängt an Feder	
		Schwingung einer Masse an einer ausgelenkten Feder	
		Schwingung eines schwimmenden Zylinders	
		Masse hängt an zwei Federn und schwingt	
В	21.1	Zusammengesetzte Federn	. 191
		Schwingung eines drehbar gelagerten Stabes	
		Zur Taylorreihe	
		Gedämpfte Schwingung eines Teilchens	
		Harmonischer Oszillator wird von außen erregt	
		Massenpunkt in der <i>x-y</i> -Ebene	
		Die Zykloide	
A	24.2	Das Zykloidenpendel	. 215
A	24.3	Eine Perle gleitet auf einer Zykloide	. 217
A	24.4	Das Problem der Tautochrone	. 218
A	24.5	Bewegung einer Peitschenschnur	. 221
В	26.1	Das Cavendish-Experiment	. 235
A	26.1	Kraftgesetz einer Kreisbahn	. 248
A	26.2	Kraftgesetz einer Spiralbahn	. 249
		Die Lemniskatenbahn	
		Fluchtgeschwindigkeit auf der Erde	
		Das Raketenproblem	
		Bewegungsgleichungen einer Zweistufenrakete	
		Kondensation eines Wassertropfens	
		Bewegung eines Lastwagens mit variabler Ladung	
В	26.2	Die reduzierte Masse	. 256
		Bahn eines Kometen	
		Bewegung im Zentralfeld	
		Meerwasser als Raketenantrieb	
		Geschichtliche Bemerkung zur Vertiefung	
		Gravitationskraft eines homogenen Stabes	
		Gravitationskraft einer homogenen Scheibe	
		Gravitationspotenzial einer Hohlkugel	
		Tunnel durch die Erde	
		Stabilität einer Kreisbahn	
		Stabilität einer Kreisbahn	
A	28.1	Massenakkretion der Sonne	
В	28.1	Bewegung eines geladenen Teilchens im Magnetfeld der Sonne	
	28.2	Ausflug zu den äußeren Planeten	
A		Periheldrehung	
A	30.1	Lorentz-Invarianz der Wellengleichung	. 365
A	30.2	Rapidität	
	31.1	Zerfall der Myonen	
Α	31.1	Zur Zeitdilatation	. 375

A	31.2	Relativität der Gleichzeitigkeit	376
A	31.3	Klassische Längenkontraktion	378
A	31.4	Zur Längenkontraktion	379
A	31.5	Lorentz-Transformation für beliebig orientierte	
		Relativgeschwindigkeit	398
В	33.1	Konstruktion der Viererkraft durch Lorentz-Transformation	409
		Der Einsteinsche Kasten	
		Zum Massenzuwachs mit der Geschwindigkeit	
A	33.1	Relativistischer Massenzuwachs	417
A	33.2	Ablenkung des Lichtes im Gravitationsfeld	419
A	33.3	Massenverlust der Sonne durch Strahlung	427
A	33.4	Geschwindigkeitsabhängigkeit der Protonenmasse	427
		Effektivität eines funktionierenden Fusionsreaktors	
A	33.6	Zerfall des π^+ -Mesons	429
		Lebensdauer der K ⁺ -Mesonen	
		Zur Kernspaltung	
		Masse-Energie-Äquivalenz am Beispiel des π^0 -Mesons	
A	33.10	OZur Paarvernichtung	434
A	33.11	1 Kinetische Energie des Photons	435
A	33.12	2 Das so genannte "Zwillingsparadoxon"	436
A	33.13	3 Kinetische Energie eines relativistischen Teilchens	438
A	34.1	Die relativistische Rakete	449
A	34.2	Die Photonenrakete	451
A	34.3	Das relativistische Zentralkraftproblem	452
R	34 1	Beispiel zur Vertiefung: Gravitationslinsen	460

Historische Notizen

1	Leopold Kronecker
2	Pierre Frédéric Sarrus
3	Thales von Milet
4	Jean Frédéric Frenet
5	Jean Gaston Darboux
6	Gabriel Cramer
7	Pierre Simon Laplace
8	Carl Friedrich Gauß
9	Sir George Gabriel Stokes
10	August Ferdinand Möbius
11	Isaak Newton
12	Robert Hooke
13	Leonhard Euler
14	Christiaan Huygens
15	Johannes Kepler
16	Tycho Brahe
17	Henry Cavendish
18	Giovanni Domenico Cassini
19	Immanuel Kant
20	Claudius Ptolemäus
21	Nikolaus Kopernikus
22	Sir Friedrich Wilhelm Herschel
23	Edwin Hubble
24	Val Logsdon Fitch
25	James Watson Cronin
26	Andrej Sacharov
27	Robert Woodrow Wilson
28	Arno Allan Penzias
29	George Gamow
30	Robert Dicke
31	Philip James Edwin Peebles
32	Vera Cooper Rubin
33	Fritz Zwicky
34	Bohdan Paczynski
35	Galileo Galilei
36	Albert Abraham Michelson

xiv Historische Notizen

37	Albert Einstein	. 352
38	Hendrik Antoon Lorentz	. 354
39	Hermann Minkowski	. 358
40	Anton Lampa	. 380
41	Robert Vivian Pound	. 436
42	Wolfgang Pauli	. 449
43	Arnold Johannes Wilhelm Sommerfeld	. 459

I Vektorrechnung

1 Einführung und Grunddefinitionen

Physikalische Größen, die durch Angabe eines Zahlenwertes vollständig bestimmt sind, nennt man

Skalare (z. B. Masse, Temperatur, Energie, Wellenlänge).

Größen, zu deren vollständiger Beschreibung neben dem Zahlenwert, dem Betrag, noch die Angabe ihrer Richtung erforderlich ist, nennt man

Vektoren (z. B. Kraft, Geschwindigkeit, Beschleunigung, Drehmoment).

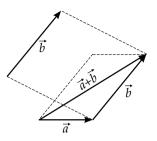
Ein Vektor lässt sich geometrisch durch eine gerichtete Strecke darstellen, d. h. durch eine Strecke, der man eine Richtung zuordnet, sodass z. B. gilt: A sei der Anfangspunkt und B sei der Endpunkt des Vektors \vec{a} (vgl. Figur).

Vektor \vec{a} zeigt von A nach B.

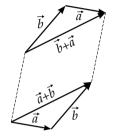
Der *Betrag* des Vektors ist dann durch die Länge der Strecke *AB* gegeben. Symbolisch beschreibt man einen Vektor häufig durch einen lateinischen Buchstaben, den man zur Verdeutlichung des Vektorcharakters mit einem kleinen Pfeil versieht. Weitere mögliche Darstellungen sind die Benutzung deutscher Buchstaben oder Herausheben durch Fettdruck.

Den Betrag eines Vektors \vec{a} schreibt man als: $|\vec{a}| = a$.

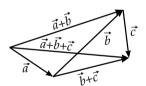
Definition: Zwei Vektoren \vec{a} und \vec{b} heißen genau dann gleich, wenn

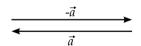

Die Vektoren \vec{a} und \vec{b} sind gleich.

sind. Dann schreiben wir $\vec{a} = \vec{b}$.


Das heißt: Alle gleichlangen und gleichgerichteten Strecken sind gleichberechtigte Darstellungen desselben Vektors. Man sieht also bei einem Vektor von seiner speziellen Lage im Raum ab.

Ein zum Vektor \vec{a} entgegengesetzt gleicher Vektor ist $-\vec{a}$. Entgegengesetzt gleiche Vektoren sind längengleich ($|\vec{a}| = |-\vec{a}|$) und liegen auf parallelen Geraden, haben aber entgegengesetzte Richtungen; sie sind somit antiparallel ($\vec{a} \uparrow \downarrow -\vec{a}$). Ist also etwa $\vec{a} = \overrightarrow{AB}$, so ist $-\vec{a} = \overrightarrow{BA}$.


2 I Vektorrechnung


Addition der Vektoren \vec{a} und \vec{b} .

Verdeutlichung der Kommutativität der Vektoraddition.

Verdeutlichung der Assoziativität der Vektoraddition.

Der Nullvektor.

Addition: Sollen zwei Vektoren \vec{a} und \vec{b} addiert werden, so bringt man durch Parallelverschiebung den Anfangspunkt des einen Vektors mit dem Endpunkt des anderen zur Deckung. Die Summe $\vec{a} + \vec{b}$, auch *Resultierende* genannt, entspricht dann der Strecke vom Anfangspunkt des ersten Vektors zum Endpunkt des zweiten. Man kann diese Summe auch als Diagonale des von \vec{a} und \vec{b} gebildeten Parallelogramms finden (vgl. Figur).

Rechenregeln: Es gelten

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (Kommutativgesetz)

und

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
 (Assoziativgesetz),

wie man sofort einsieht (vgl. Figuren).

Subtraktion: Die Differenz zweier Vektoren \vec{a} und \vec{b} ist definiert als:

$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b}).$$

Nullvektor: Die Vektordifferenz $\vec{a} - \vec{a}$ bezeichnet man als Nullvektor:

$$\vec{a} - \vec{a} = \vec{0}$$
 oder $\vec{a} - \vec{a} = 0$.

Der Nullvektor hat den Betrag 0; er ist richtungslos.

Multiplikation eines Vektors mit einem Skalar: Unter dem Produkt $p\vec{a}$ eines Vektors \vec{a} mit einem Skalar p, wobei p eine reelle Zahl ist, versteht man einen Vektor, der die gleiche Richtung besitzt wie \vec{a} und dessen Betrag $|p\vec{a}| = |p| \cdot |\vec{a}|$ ist.

Die Multiplikation eines Vektors \vec{a} mit einem Skalar p (in diesem Falle ist p=3).

Rechenregeln:

$$q(p\vec{a}) = p(q\vec{a}) = qp\vec{a}$$
, (wobei p und q reell)
 $(p+q)\vec{a} = p\vec{a} + q\vec{a}$,

$$p(\vec{a} + \vec{b}) = p\vec{a} + p\vec{b}.$$

Diese Regeln sind sofort einzusehen und bedürfen keiner weiteren Erläuterung.