Impressum

Erarbeitet im Auftrag des Bayerischen Staatsministeriums für Unterricht und Kultus

Leiter des Arbeitskreises

Dr. Christian Huber Staatsinstitut für Schulqualität und Bildungsforschung

Mitglieder des Arbeitskreises

Physik

Kerstin Fritzlar Staatliche Fach- und Berufsoberschule Straubing

Dr. Ralf Graupner Staatliche Fachoberschule Nürnberg

Christian Schiller Staatliche Fach- und Berufsoberschule Friedberg

Technologie/Naturwissenschaften

Bernd Hoffmann Staatliche Fach- und Berufsoberschule Augsburg

Chemie

Dr. Markus Haitzer Staatliche Fach- und Berufsoberschule Traunstein

Herausgeber

Staatsinstitut für Schulqualität und Bildungsforschung Abteilung Berufliche Schulen

Schellingstr. 155 • 80797 München Tel.: 089 2170-2111 • Fax: 089 2170-2215

Internet: www.isb.bayern.de

E-Mail: berufliche.schulen@isb.bayern.de

Abbildungen, Graphiken

Arbeitskreismitglieder

1. Auflage 2019, geänderter Nachdruck 2020 Druck 5 4 3

Druck 5 4 3

ISBN: 978-3-8085-8494-1

Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Jede Verwertung außerhalb der gesetzlich geregelten Fälle muss vom Verlag schriftlich genehmigt werden.

© 2019 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten http://www.europa-lehrmittel.de

Satz/Layout: PrePress-Salumae.com, Kaisheim

Umschlaggestaltung: MediaCreativ, G. Kuhl, 40724 Hilden

Druck: ITC Print, 1035 Riga (Lettland)

STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN

FORMELSAMMLUNG

PHYSIK TECHNOLOGIE/NATURWISSENSCHAFTEN CHEMIE

Physik

1	Grundlagen				
	1.1	1 Dichte			
	1.2	2 Gewichtskraft			
	1.3	3 Hooke'sches Gesetz			
	1.4	4 Druck			
	1.5	.5 Hydrostatischer Druck			
	1.6	1.6 Auftriebskraft			
	1.7	1.7 Reibungskraft			
	1.8	Drehmoment	14		
2	Geradlinige Bewegungen				
	2.1	Mittlere und momentane Geschwindigkeit	15		
	2.2	Geradlinige Bewegung mit konstanter Geschwindigkeit			
	2.3	Mittlere und momentane Beschleunigung	16		
	2.4	Geradlinige Bewegung mit konstanter Beschleunigung	16		
3	Newton'sche Gesetze				
	3.1	Trägheitssatz (1. Newton'sches Gesetz)	17		
	3.2	Grundgesetz der Mechanik (2. Newton'sches Gesetz)	17		
	3.3	Wechselwirkungsprinzip (3. Newton'sches Gesetz)	18		
	3.4	Gravitationsgesetz von Newton	18		
4	Ark	Arbeit, Energie, Leistung und Wirkungsgrad			
	4.1	Arbeit	19		
	4.2	Mechanische Energie			
	4.3	Energieerhaltungssatz der Mechanik			
	4.4	Mittlere und momentane Leistung			
	45	Wirkungsgrad einer kontinuierlich arbeitenden Maschine	21		

5	Impuls, Kraftstoß, Stoßvorgänge			
	5.1	Impuls		
	5.2	Kraftstoß		
	5.3	Impulserhaltungssatz		
6	Dynamik von Flüssigkeiten und Gasen			
	6.1	Volumenstrom		
	6.2	Strömungsgeschwindigkeit		
	6.3	Bernoulligleichung		
7	Kreisbewegung mit konstanter Winkelgeschwindigkeit			
	7.1	Winkel im Bogenmaß		
	7.2	Winkelgeschwindigkeit		
	7.3	Frequenz und Umlaufdauer		
	7.4	Zusammenhänge zwischen Winkelgeschwindigkeit, Frequenz und Umlaufdauer		
	7.5	Bahngeschwindigkeit		
	7.6	Zentripetalbeschleunigung und Zentripetalkraft		
8	Mechanische Schwingungen			
	8.1	Lineares Kraftgesetz bei einer ungedämpften, harmonischen linearen Schwingung		
	8.2	Differenzialgleichung einer harmonischen Schwingung		
	8.3	Allgemeine Lösung der Differenzialgleichung einer harmonischen Schwingung		
	8.4	Periodendauer einer harmonischen Schwingung		
9	Mechanische Wellen – Akustik			
	9.1	Fortschreitende Wellen		
	9.2	Interferenz zweier Kreiswellen		
	9.3	Beugung und Interferenz am Mehrfachspalt		
	9.4	Stehende Wellen		

10	Grundlagen der Wärmelehre				
	10.1 Längen- und Volumenänderungen von Körpern bei Temperaturänderungen				
	10.2 Zustandsgleichung eines idealen Gases				
	10.3 Wärme und Wärmekapazität				
11	Grundlagen der Elektrizitätslehre				
	11.1 Elektrische Stromstärke				
	11.2 Elektrischer Widerstand				
	11.3 Elektrische Arbeit und Leistung eines konstanten Gleichstroms				
	11.4 Reihen- und Parallelschaltung elektrischer Widerstände				
12	Elektrisches Feld				
	12.1 Coulomb-Gesetz				
	12.2 Elektrische Feldstärke, Spannung und Potenzial				
	12.3 Elektrische Feldstärke im radialsymmetrischen elektrischen Feld einer Punktladung (Coulomb-Feld)				
	12.4 Homogenes elektrisches Feld eines Plattenkondensators				
	12.5 Kondensator				
13	Magnetisches Feld und Induktion				
	13.1 Kraft auf einen stromdurchflossenen, geraden Leiter im homogenen Magnetfeld				
	13.2 Magnetische Flussdichte in einer lang gestreckten, stromdurchflossenen Spule				
	13.3 Kraft auf ein geladenes Teilchen im homogenen Magnetfeld (Lorentzkraft)				
	13.4 Magnetische Induktion				
	13.5 Spule im Stromkreis				
14	Elektromagnetischer Schwingkreis				
	14.1 Differenzialgleichung einer ungedämpften elektromagnetischen Schwingung				
	14.2 Allgemeine Lösung der Differenzialgleichung der ungedämpften elektromagnetischen Schwingung				
	14.3 Thomson-Gleichung für die Periodendauer der ungedämpften elektromagnetischen Schwingung				

15	Elektromagnetische Wellen			
	15.1 Fortschreitende, linear polarisierte elektromagnetische Welle im Vakuum			
	15.2 Dipolschwingungen			
16	Geometrische Optik			
	16.1 Reflexion und Brechung			
	16.2 Abbildungsgleichungen für dünne Linsen			
17	Spezielle Relativitätstheorie			
	17.1 Lorentzfaktor			
	17.2 Geschwindigkeitsabhängigkeit der Masse			
	17.3 Relativistischer Impuls			
	17.4 Relativistische Energie			
18	Quantenphysik			
	18.1 Photonen			
	18.2 Äußerer lichtelektrischer Effekt (Einstein-Gleichung)			
	18.3 Wellenlänge einer Materiewelle (de Broglie-Welle)			
	18.4 Heisenberg'sche Unbestimmtheitsrelation (Unschärferelation)			
	18.5 Eindimensionale, zeitunabhängige Schrödingergleichung			
19	Atomphysik			
	19.1. Energiestufen des Elektrons im Wasserstoffatom			
	19.2. Allgemeine Serienformel für das Linienspektrum im Wasserstoffatom			
	19.3. Moseley-Gesetz für die K_{α} -Linie im Röntgenspektrum			
	19.4. Bragg-Bedingung für ein Kristallgitter			
20	Kernphysik			
	20.1 Berechnung des Massendefekts eines Atomkerns aus Atommassen			
	20.2 Radioaktivität			

Technologie/Naturwissenschaften

1	Technische Mechanik – Statik		
	1.1	Grundgleichungen	58
	1.2	Kräftezerlegung in zueinander senkrechten Komponenten	58
	1.3	Ersatzkraft und Ersatzmoment bei Einzelkräften	59
	1.4	Ersatzkraft bei Streckenlasten	59
	1.5	Kräftepaare	60
	1.6	Statische Bestimmtheit ebener Kräftesysteme	60
	1.7	Statische Bestimmtheit ebener Fachwerke	60
2	Tec	hnische Mechanik – Festigkeitslehre	61
	2.1	Zug- und Druckbeanspruchung	61
	2.2	Scherbeanspruchung	62
	2.3	Biegebeanspruchung	62
	2.4	Torsionsbeanspruchung	63
	2.5	Knickung (nach Euler)	64
	2.6	Flächenpressungen	65
3	Energietechnik		
	3.1	Mechanischer Wirkungsgrad	67
	3.2	Energieformen	67
	3.3	Leistung, Erträge und Kenngrößen von technischen Systemen	69
4	Thermodynamik		
	4.1	Thermische Zustandsgleichungen	73
	4.2	Spezifische Wärmekapazitäten idealer Gase	
	4.3	Adiabate Zustandsänderung idealer Gase	
	4.4	Hauptsätze der Thermodynamik	
	4.5	Innere Energie. Wärme und Arbeit thermodynamischer Prozesse	76

Chemie

1	Quantitative Aspekte		
	1.1	Teilchenzahl	82
	1.2	Masse	82
	1.3	Volumen idealer Gase	82
	1.4	Stoffmengenkonzentration	82
	1.5	Massenkonzentration	82
	1.6	Massenanteil	83
2	Mit	ttlere Reaktionsgeschwindigkeit	83
3	Massenwirkungsgesetz		
	3.1	Massenwirkungsgesetz, konzentrationsbezogen	84
	3.2	Massenwirkungsgesetz, druckbezogen	84
	3.3	Gibbs-Helmholtz-Gleichung	84
4	Säure-Base-Gleichgewichte		
	4.1	Ionenprodukt des Wassers	85
	4.2	Säurekonstante und Säureexponent	85
	4.3	Basekonstante und Baseexponent	85
	4.4	pH-Wert	86
	4.5	pOH-Wert	86
	4.6	pH-Wert in sauren Lösungen	87
	4.7	Henderson-Hasselbalch-Gleichung	87
5	Redox-Gleichgewichte		
	5.1	Leerlaufspannung eines galvanischen Elements	88
	5.2	Nernst'sche Gleichung	89

Tabellen – Physik

1	Ausgewählte Konstanten	92
2	Ruhemassen und Ruheenergien ausgewählter Teilchen	93
3	Weitere wichtige physikalische Größen und ihre Einheiten	94
4	Umrechnung von Einheiten ausgewählter Größen	97
5	SI-Vorsätze und griechisches Alphabet	98
6	Elektromagnetisches Spektrum	99
7	Schaltzeichen im Physikunterricht	100
Tab	pellen – Technologie/Naturwissenschaften	
1	Gaskonstanten M , c_p , c_v , R_i und κ	101
2	Heizwerte	102
3	Spezifische Wärmekapazitäten c von Flüssigkeiten und Feststoffen (bei 20° C)	103
4	Flächenmomente 2. Ordnung und Widerstandsmomente	104
5	Eisen-Kohlenstoff-Diagramm	105

Tabellen – Chemie

1	Säurekonstanten und Basekonstanten	106	
2	Elektrochemische Spannungsreihe der Metalle	107	
3	Elektrochemische Spannungsreihe der Nichtmetalle	108	
4	Elektrochemische Spannungsreihe weiterer Halbreaktionen	109	
Stichwortverzeichnis			
Anh	nang		
Mei	Merkhilfe Mathematik Technik		
Pori	Periodensystem 1		

Physik

1 Grundlagen

1.1 Dichte

ρ ist die Dichte eines Körpers/einer Flüssigkeit/eines Gases,

m die Masse des Körpers/der Flüssigkeit/des Gases,

V das zugehörige Volumen.

$$\rho = \frac{m}{V}$$

1.2 Gewichtskraft

 $F_{
m G}$ ist der Betrag der auf einen Körper wirkenden Gewichtskraft $\vec{F}_{
m G}$,

 $F_{\rm G} = m \cdot g$

m die Masse des Körpers,

g der Ortsfaktor (Betrag der Fallbeschleunigung).

1.3 Hooke'sches Gesetz

F ist der Betrag der Kraft \vec{F} , mit der eine Feder gedehnt/gestaucht wird.

$$F = D \cdot s$$

D die Federkonstante (Federhärte),

s die Länge der Dehnung/Stauchung der Feder.

1.4 Druck

p ist der Druck,

 $F_{
m N}$ der Betrag der Kraft $ec{F}_{
m N}$, die senkrecht auf eine Fläche wirkt (Normalkraft).

A der Flächeninhalt.

$$p = \frac{F_{\rm N}}{A}$$

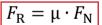
(SE

1.5 Hydrostatischer Druck

- p_h ist der hydrostatische Druck,
- h die Höhe der Flüssigkeitssäule,
- ρ die Dichte der Flüssigkeit,
- g der Ortsfaktor (Betrag der Fallbeschleunigung).

$p_h = \rho \cdot g \cdot h$

1.6 Auftriebskraft


- F_{A} ist der Betrag der Auftriebskraft \vec{F}_{A} ,
- ρ die Dichte des Mediums (Flüssigkeit oder Gas), in das ein Körper ganz oder teilweise eingetaucht ist,
- V das Volumen des verdrängten Mediums,
- g der Ortsfaktor (Betrag der Fallbeschleunigung).

$F_{\rm A} = \rho \cdot g \cdot V$

1.7 Reibungskraft

Reibungskraft zwischen zwei Festkörpern

- $F_{
 m R}$ ist der Betrag der Reibungskraft $ec{F}_{
 m R}$,
- $F_{
 m N}$ der Betrag der Normalkraft $ec{F}_{
 m N}$, mit der ein Körper auf eine Unterlage gedrückt wird,
- μ die Reibungszahl.

 $F_{\rm R} = 6\pi \cdot \eta \cdot r \cdot v$

Reibungskraft bei laminarer Strömung (Gesetz von Stokes)

- $F_{
 m R}$ ist der Betrag der Reibungskraft $ec{F}_{
 m R}$,
- r der Radius einer Kugel,
- der Betrag der Geschwindigkeit \vec{v} , mit der sich die Kugel in einem Medium (Flüssigkeit oder Gas) bewegt,
- η die Viskosität (Zähigkeit) des Mediums.

Reibungskraft bei turbulenter Strömung

- ist der Betrag der Reibungskraft $\vec{F}_{\rm R}$, $F_{\rm R}$
- υ
- der Flächeninhalt der angeströmten Α Querschnittsfläche des Körpers,
- der Widerstandsbeiwert, c_{W}
- die Dichte des Mediums. ρ

der Betrag der Reibungskraft
$$r_{
m R}$$
,
der Betrag der Geschwindigkeit $ec{v}$ eines Körpers,
 $F_{
m R}=rac{1}{2}\,c_{
m W}\cdot A\cdot
ho\cdot v^2$

1.8 **Drehmoment**

- ist der Betrag des Drehmoments \vec{M} , Μ
- der Betrag der Kraft \vec{F} , F
- l der Hebelarm.

2 Geradlinige Bewegungen

Ein Körper (Massenpunkt) bewegt sich längs der x-Achse eines kartesischen Koordinatensystems.

2.1 Mittlere und momentane Geschwindigkeit

Betrachtet wird die Bewegung des Körpers im Zeitintervall $[t; t + \Delta t]$.

- $ar{v}_x$ ist die Koordinate der mittleren Geschwindigkeit $ec{ec{v}}$ des Körpers in diesem Zeitintervall,
- Δt die Länge des Zeitintervalls,
- Δx die Änderung der Koordinate des Ortes \vec{r} des Körpers in diesem Zeitintervall.
- $v_x(t)$ ist die Koordinate der momentanen Geschwindigkeit \vec{v} des Körpers in Abhängigkeit von der Zeit t.

$$v_x(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\mathrm{d}}{\mathrm{d}t} x(t) = \dot{x}(t)$$

 $x(t) = x_0 + v_x \cdot t$ $v_x = \text{konst.}$

2.2 Geradlinige Bewegung mit konstanter Geschwindigkeit

- x(t) ist die Koordinate des Ortes \vec{r} des Körpers in Abhängigkeit von der Zeit t,
- x_0 die Koordinate des Ortes \vec{r} des Körpers zum Zeitpunkt $t_0 = 0$,
- v_x die Koordinate der konstanten Geschwindigkeit \vec{v} des Körpers.

2.3 Mittlere und momentane Beschleunigung

Betrachtet wird die Bewegung des Körpers im Zeitintervall [t; $t + \Delta t$].

- $ar{a}_{x}$ ist die Koordinate der mittleren Beschleunigung $ar{ec{a}}$ in diesem Zeitintervall,
- Δt die Länge des Zeitintervalls,
- Δv_x die Änderung der Koordinate der Geschwindigkeit $ec{v}$ des Körpers in diesem Zeitintervall.
- $a_x(t)$ ist die Koordinate der momentanen Beschleunigung \vec{a} , die der Körper erfährt, in Abhängigkeit von der Zeit t.

$$a_{x}(t) = \lim_{\Delta t \to 0} \frac{\Delta v_{x}}{\Delta t} = \frac{\mathrm{d}}{\mathrm{d}t} v_{x}(t) = \dot{v}_{x}(t) = \ddot{x}(t)$$

2.4 Geradlinige Bewegung mit konstanter Beschleunigung

- x(t) ist die Koordinate des Ortes \vec{r} des Körpers in Abhängigkeit von der Zeit t,
- x_0 die Koordinate des Ortes \vec{r} des Körpers zum Zeitpunkt $t_0 = 0$.
- $v_x(t)$ ist die Koordinate der momentanen Geschwindigkeit $ec{v}$ in Abhängigkeit von der Zeit t,
- $x(t) = x_0 + v_{0,x} \cdot t + \frac{1}{2} a_x \cdot t^2$ $v_x(t) = v_{0,x} + a_x \cdot t$ $a_x = \text{konst.}$ $v_x^2 v_{0,x}^2 = 2a_x(x x_0)$
- $v_{0,x}$ die Koordinate der Geschwindigkeit \vec{v} zum Zeitpunkt $t_0=0$,
- a_x die Koordinate der konstanten Beschleunigung \vec{a} , die der Körper erfährt.

3 Newton'sche Gesetze

3.1 Trägheitssatz (1. Newton'sches Gesetz)

Ist die Summe aller an einem Körper angreifenden Kräfte gleich Null, so bleibt der Körper im Zustand der Ruhe oder bewegt sich mit konstanter Geschwindigkeit weiter.

3.2 Grundgesetz der Mechanik (2. Newton'sches Gesetz)

Grundgesetz bei konstanter Masse eines Körpers

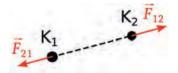
- \vec{F} ist die resultierende Kraft, die einen Körper beschleunigt,
- Δt die Länge des Zeitintervalls, während dessen der Körper beschleunigt wird,
- $ec{F} = m \cdot \vec{a}$ $ec{F} \cdot \Delta t = m \cdot \Delta \vec{v}$

 $\vec{F}(t) = \frac{\mathrm{d}}{\mathrm{d}t}\vec{p}(t) = \dot{\vec{p}}(t)$

- $\Delta \vec{v}$ die Änderung der Geschwindigkeit des Körpers im Zeitintervall $[t; t + \Delta t]$,
- *m* die konstante Masse des Körpers,
- \vec{a} die Beschleunigung, die der Körper erfährt.

Verallgemeinerung des Grundgesetzes

- $\vec{F}(t)$ ist die resultierende Kraft auf einen Körper in Abhängigkeit von der Zeit t,
- $ec{p}(t)$ der Impuls des Körpers in Abhängigkeit von der Zeit t ,
- $\dot{ec{p}}(t)$ die zeitliche Ableitung des Impulses $ec{p}$ in Abhängigkeit von der Zeit t .


3.3 Wechselwirkungsprinzip (3. Newton'sches Gesetz)

Übt ein Körper K_1 auf einen Körper K_2 eine Kraft \vec{F}_{12} aus, so erfährt umgekehrt auch der Körper K_1 stets eine Kraft \vec{F}_{21} , die der Körper K_2 auf ihn ausübt.

Es gilt: $\vec{F}_{12} = -\vec{F}_{21}$

anziehende Kräfte

abstoßende Kräfte

3.4 Gravitationsgesetz von Newton

 $F_{\mathbf{G}}$ ist der Betrag der Gravitationskraft $\vec{F}_{\mathbf{G}}$, mit der sich die Körper \mathbf{K}_1 und \mathbf{K}_2 gegenseitig anziehen.

 m_1, m_2 sind die Massen der Körper K_1 und K_2 ,

- r ist der Abstand ihrer Massenschwerpunkte,
- *G* die Gravitationskonstante.

$$F_{\rm G} = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

 $W_{12} = \vec{F} \circ \vec{s}$

 $W_{12} = |\vec{F}| \cdot |\vec{s}| \cdot \cos \alpha$

4 Arbeit, Energie, Leistung und Wirkungsgrad

4.1 Arbeit

- W_{12} ist die Arbeit, die von der konstanten Kraft \vec{F} an einem Körper bei dessen Verschiebung vom Punkt P_1 zum Punkt P_2 verrichtet wird,
- $ec{F}$ die konstante Kraft, durch die der Körper verschoben wird,
- $\vec{s} \qquad \text{der lineare Weg vom Punkt P}_1 \text{ zum Punkt P}_2 \\ (\vec{s} = \overrightarrow{P_1P_2}),$
- α der eingeschlossene Winkel zwischen \vec{F} und \vec{s} .
- W ist die Arbeit, die die konstante Kraft \vec{F} am Körper bei dessen Verschiebung entlang der Strecke \vec{s} verrichtet,

$$W = F \cdot s$$

 $W_{12} = \int_{1}^{x_2} F_x(x) \mathrm{d}x$

- F der Betrag der konstanten Kraft \vec{F} in Richtung der Strecke \vec{s} ,
- s der Betrag der Strecke \vec{s} in Richtung der Kraft \vec{F} .

Ein Körper wird längs der x-Achse eines Koordinatensystems durch eine ortsabhängige Kraft \vec{F} verschohen

- W_{12} ist die Arbeit, die von der Kraft \vec{F} an diesem Körper bei dessen Verschiebung von x_1 nach x_2 verrichtet wird,
- $oldsymbol{x_1}$ die Koordinate des Ortes des Körpers vor der Verschiebung,
- x_2 die Koordinate des Ortes des Körpers nach der Verschiebung,
- $F_x(x)$ die x-Koordinate der Kraft \vec{F} in Abhängigkeit von x.