

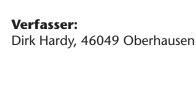
EUROPA-FACHBUCHREIHE Programmierung für die IT-Ausbildung

```
package java_it_berufe;

public class Java_IT_Berufe {

   public static void main(String[] args) {

      System.out.println("Informationsteil:");
      System.out.println(" - Einführung Java");
      System.out.println(" - GUI-Programmierung");
      System.out.println(" - DB-Anbindung");


      System.out.println("Aufgabenpool");

      System.out.println("Lernsituationen");
    }
}
```

3. Auflage

VERLAG EUROPA-LEHRMITTEL · Nourney, Vollmer GmbH & Co. KG Düsselberger Str. 23 · 42781 Haan-Gruiten

Europa-Nr.: 85535

3. Auflage 2019

Druck 5 4 3 2 1

Alle Drucke derselben Auflage sind parallel einsetzbar, da sie bis auf die Behebung von Druckfehlern untereinander unverändert sind.

ISBN 978-3-8085-8597-9

Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Jede Verwertung außerhalb der gesetzlich geregelten Fälle muss vom Verlag schriftlich genehmigt werden.

© 2019 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten http://www.europa-lehrmittel.de

Satz: Reemers Publishing Services GmbH, 47799 Krefeld Umschlag: braunwerbeagentur, 42477 Radevormwald

Umschlagfotos: Tomy Badurina-fotolia.com, DeVlce-fotolia.com, fp-fotolia.com, bilderbox-fotolia.com

Druck: Medienhaus Plump GmbH, 53619 Rheinbreitbach

Vorbemerkung

Die Java-Technologie wurde Anfang der 90er-Jahre entwickelt, um ein eigenständiges System aus einer modernen Programmiersprache und einer ausführenden Umgebung zu erhalten. Damit sollte eine plattformunabhängige Programmierung möglich sein, denn auf jeder Plattform (auch auf einer Kaffeemaschine) brauchte nur die ausführende Umgebung vorhanden zu sein.

Der Durchbruch gelang der Java-Technologie in Verbindung mit dem Internet in den späten 90er-Jahren. Die Web-Programmierung wurde durch Java und die entsprechenden Techniken (wie Applets) deutlich vorangetrieben. Heute sind Java-Programme in allen Bereichen zu finden: nicht nur in der Web-Programmierung, sondern auch als Desktopanwendungen, im *Mobile Computing* oder auch als eingebettete Systeme (*Embedded Systems*).

Die Beschäftigung mit Java beinhaltet deshalb nicht nur das Erlernen einer objektorientierten Programmiersprache, sondern auch eine verstärkte Auseinandersetzung mit der Bandbreite der Java-Technologie – gerade für **Auszubildende in den IT-Berufen** ist das ein sehr wichtiger Aspekt.

Aufbau des Buches

Das vorliegende Buch möchte die Sprache Java möglichst anschaulich, praxis- und unterrichtsnah vermitteln. Damit verfolgt dieses Buch einen **praktischen Ansatz**. Es ist die Ansicht des Autors, dass gerade in der schulischen Ausbildung der Zugang zu den komplexen Themen der Programmierung verstärkt durch anschauliche und praktische Umsetzung vorbereitet werden muss. Anschließend können allgemeine und komplexe Aspekte der Programmierung oder auch der Softwareentwicklung besser verstanden und umgesetzt werden.

Das Buch ist in drei Teile gegliedert.

Der erste Teil des Buches dient als Informationsteil und bietet eine systematische Einführung in die Sprache Java sowie in die Grundlagen der Java-Technologie. Ein Einstieg in die GUI-Programmierung mit den klassischen Bibliotheken AWT und Swing, aber auch ein Einstieg in die moderne JavaFX-Technik sowie die Anbindung von Datenbanken runden diesen Informationsteil ab.

Der zweite Teil des Buches ist eine Sammlung von Übungsaufgaben. Nach der Erarbeitung der entsprechenden Kenntnisse aus dem Informationsteil können die Aufgaben aus diesem Teil zur weiteren Auseinandersetzung mit den Themen dienen und durch verschiedene Schwierigkeitsgrade auch die Differenzierung im Unterricht ermöglichen.

Der dritte Teil des Buches beinhaltet Lernsituationen basierend auf dem Lernfeld "Entwickeln und Bereitstellen von Anwendungssystemen" aus dem Rahmenlehrplan für die IT-Berufe (speziell Fachinformatiker-Anwendungsentwicklung). Lernsituationen konkretisieren sich aus den Lernfeldern und sollen im Idealfall vollständige Handlungen darstellen (Planen, Durchführen, Kontrollieren). Aus diesem Grund werden die Lernsituationen so angelegt, dass neben einer Planungsphase nicht nur die Durchführung (Implementation des Programms) im Blickpunkt steht, sondern auch geeignete Testverfahren zur Kontrolle des Programms bzw. des Entwicklungsprozesses in die Betrachtung einbezogen werden. Die Lernsituationen können aber auch als **Projektideen** verstanden werden.

Das Buch ist für alle berufsbezogenen Ausbildungsgänge im IT-Bereich konzipiert. Durch die differenzierten Aufgabenstellungen kann es in allen IT-Berufen (speziell Fachinformatiker), aber auch von den informationstechnischen Assistenten genutzt werden. Ebenso vorstellbar ist der Einsatz des Buches in der gymnasialen Oberstufe sowie zu den Übungen der Basisvorlesungen der Fachhochschulen mit informationstechnischen Studiengängen.

Als Entwicklungswerkzeug wird in diesem Buch **Apache NetBeans 10.0** genutzt. Diese Entwicklungsumgebung ist kostenfrei als Download im Internet verfügbar.

Für Anregungen und Kritik zu diesem Buch sind wir Ihnen dankbar (gerne auch per E-Mail).

Dirk Hardy Im Sommer 2019

E-Mail: Hardy@DirkHardy.de

Verlag Europa-Lehrmittel

E-Mail: Info@Europa-Lehrmittel.de

Vor	beme	rkung		3
Auf	bau d	es Buc	hes	3
Teil	1 Ein	führur	ng in Java	11
1	Einfü	hrung	in die Java-Technologie	13
	1.1		/a-Technologie	
		1.1.1	Entstehung der Java-Technologie	
		1.1.2	Eigenschaften der Java-Technologie	
		1.1.3	Die Komponenten der Java-Technologie	
		1.1.4	Kompilierung von Java-Programmen	
	1.2		rache Java	
		1.2.1	Entwicklung der Sprache Java	
		1.2.2	Eigenschaften der Sprache Java	
		1.2.3	Schlüsselworte in Java	
		1.2.4	Prozedurale, strukturierte und objektorientierte Programmierung unter Java	
		1.2.5	Bestandteile eines Java-Programms	
2	Dage	weto la	NA Drogramm	10
_	2.1		wa-Programma-Projekt anlegen	
	2.2		ste Java-Programm	
		2.2.1	Das Java-Grundgerüst	
		2.2.2	Pakete	
		2.2.3	Die Klasse HalloWelt und die Hauptmethode main	
		2.2.4	Die Ausgabe auf dem Bildschirm	
		2.2.5	Wichtige Regeln eines Java-Programms	
	2.3		legende Konventionen in Java	
	2.3	2.3.1	Bezeichner (Namen) in Java	
		2.3.1	Trennzeichen	
		2.3.3	Kommentare in Java	
	2.4		typen und Variablen	
	2.7	2.4.1	Variablen in Java	
		2.4.2	Elementare Datentypen	
		2.4.3	Deklaration einer Variablen	
		2.4.4	Operationen auf den elementaren Datentypen	
		2.4.5	Konstante Variablen	
,	A	d F:	mucho in Iono	24
3			ngabe in Java	
	3.1	_	be in Java	
	3.2	3.1.1	Ausgabe von Variablen De über die Konsole	
	5.2	_	Zeichenketten einlesen	
		3.2.1		
		3.2.2	Konvertierung der Eingabe	. 36
4	Oper		ı in Java	
	4.1		netische Operatoren	
		4.1.1	Elementare Datentypen und ihre arithmetischen Operatoren	
		4.1.2	Der Modulo-Operator	
		4.1.3	Inkrement- und Dekrementoperatoren	
	4.2		onale und logische Operatoren	
		4.2.1	Relationale Operatoren	
		4.2.2	Logische Operatoren	
	4.3	•	eratoren und weitere Operatoren	
		4.3.1	Logische Bit-Operatoren	
		4.3.2	Bit-Schiebeoperatoren	
		4.3.3	Typumwandlung mit cast-Operatoren	
		4.3.4	Zuweisung und gekoppelte Zuweisung	
	4.4	Rang v	on Operatoren	. 46

5	Selel	ktion u	ınd Iteration	48
	5.1	Die Se	lektion	48
		5.1.1	Darstellung der Selektion mit einem Programmablaufplan	48
		5.1.2	Die einseitige Selektion mit der if-Anweisung	
		5.1.3	Die zweiseitige Selektion mit der if-else-Anweisung	
		5.1.4	Verschachtelte Selektionen mit if und if-else	
		5.1.5	Mehrfachselektion mit switch	
	5.2		kopf- und zählergesteuerte Iterationen	
		5.2.1	Die do-while-Schleife	
		5.2.2	Die while-Schleife	
		5.2.3	Die for-Schleife	
		5.2.4	Abbruch und Sprung in einer Schleife	
6	Dac	Klassor	ıkonzept in Java	61
•	6.1		ste Klasse in Java	
	0.1	6.1.1	Aufbau einer Klasse in Java	
		6.1.2	Werttypen und Verweistypen	
	6.2		oden in Java	
	0.2	6.2.1	Aufbau einer Methode	
		6.2.2	Rückgabewert einer Methode	
		6.2.3	Lokale Variablen	
		6.2.4	Übergabeparameter einer Methode	
		6.2.5	Überladen von Methoden	
		6.2.6	Zusammenfassende Hinweise zu Methoden	
	6.3		re Elemente von Klassen	
		6.3.1	Konstruktoren und der Destruktor	
		6.3.2	Der this-Verweis	
		6.3.3	Statische Klassenelemente	
		6.3.4	Konstante Klassenelemente	
	6.4		hlungstypen	
		6.4.1	Einfache Aufzählungen	
		6.4.2	Klassen von Aufzählungen	82
7	Vere		in Java	
	7.1		ererbung in Java	
		7.1.1	Die einfache Vererbung	
		7.1.2	Umsetzung der Vererbung in Java	85
		7.1.3	Zugriff auf Attribute	87
		7.1.4	Finale Klassen	88
	7.2	Polym	orphimus	
		7.2.1	Die Klasse Object	
		7.2.2	Zuweisungen innerhalb von Vererbungshierarchien	90
		7.2.3	Überschreiben von Methoden	91
	7.3	Abstra	ıkte Basisklassen	
		7.3.1	Eine abstrakte Basisklasse	
	7.4	Interfa	aces in Java	
		7.4.1	Aufbau eines Interfaces	
8	Arra	vs in la	nva	. 98
_	8.1		nd mehrdimensionale Arrays	
	J. I	8.1.1	Eindimensionale Arrays	
		8.1.2	Die for each-Schleife	
		8.1.3	Mehrdimensionale Arrays	
		8.1.4	·	
		8.1. 4 8.1.5	Arrays von Objekton	
			Arrays von Objekten	
	0.2	8.1.6	Übergabe von Arrays an Methoden	
	8.2		ren von Arrays	
		8.2.1		
		8.2.2	Statische Sortiermethode sort	112
		カノイ	DAS INTERIACE COMDIARADIE	113

	8.3	Besono	lere Array-Klassen	. 114
		8.3.1	Die Klasse ArrayList	
		8.3.2	Die Klasse HashMap	. 115
9	Datei		tionen in Java	
	9.1	Lesen ı	und Schreiben von Dateien	
		9.1.1	Sequenzielles Lesen und Schreiben	
		9.1.2	Direkter Zugriff in Dateien	
	9.2		teien lesen und schreiben	
		9.2.1	Textdateien mit dem PrintWriter schreiben	
		9.2.2	Textdateien mit dem Scanner lesen	
	9.3		ierung von Objekten	
	9.4		den der Klasse File	
		9.4.1	Methoden der Klasse File	
		9.4.2	Verzeichnisse auflisten	. 129
10	Foute	oceb vi	ttone Thoman in lava	121
10	10.1		ttene Themen in Java nmen – Exceptions	
	10.1		Versuchen und Auffangen (try and catch)	
			System-Exceptions	
			Der finally-Block	
			Ausnahmen werfen	
			Eigene Exception-Klassen erstellen	
	10.2		sche Programmierung	
	10.2		Generische Methoden	
			Generische Klassen	
			Generische Listenklassen benutzen	
	10.3		a-Ausdrücke	
	10.4		nd UML	
	10.1	•	Das Klassendiagramm	
			Darstellung der Attribute im Klassendiagramm	
			Darstellung der Methoden im Klassendiagramm	
			Umsetzung eines Klassendiagramms	
			Beziehungen zwischen Klassen	
			Die Assoziation	
			Die Aggregation	
			Die Komposition	
11	GUI-P	rograi	mmierung mit dem Abstract Window Toolkit AWT	159
	11.1		ogrammierung	
			Historische Entwicklung der GUI-Programmierung	
			Aufbau des AWT	
			Grundbegriffe der GUI-Programmierung	
	11.2		ste GUI-Programm	
			Die Klasse Frame nutzen	
			Eine eigene Frame-Klasse schreiben	
	11.3		nd Grafikausgabe	
			Das Paint-Ereignis und die erste Textausgabe	
			Einen Clientbereich hinzufügen	
			Einfache Grafikausgabe	
			Mehrzeilige Textausgabe	
	11.4		sgesteuerte Programmierung	
			Grundlage der ereignisgesteuerten Programmierung	
		11.4.2	Ereignisarten und Ereignisempfänger	. 171

12	Steue	erelemente mit dem AWT und mit Swing-Klassen	175
	12.1	Steuerelemente mit dem AWT	175
		12.1.1 Einfache Steuerelemente	175
		12.1.2 Steuerelemente benutzen	175
		12.1.3 Auf Ereignisse reagieren	176
		12.1.4 Beispielanwendung mit einfachen Steuerelementen	177
		12.1.5 Mit dem Layoutmanager Steuerelemente anordnen	180
	12.2	Steuerelemente mit Swing-Klassen	182
		12.2.1 Grundlagen der Swing-Klassen	
		12.2.2 Swing-Steuerelemente	183
		12.2.3 Einfache Swing-Steuerelemente einsetzen	184
		12.2.4 Look and Feel	187
		12.3.1 Die Baumansicht JTree	187
		12.3.2 Anlegen von Knoten in einem JTree	188
		12.3.3 Wichtige JTree-Methoden im Überblick	
		12.3.4 Auf JTree-Ereignisse reagieren	
		12.3.5 Tabellen mit JTable	
		12.3.6 Wichtige Table-Methoden im Überblick	
		12.3.7 Auf JTable-Ereignisse reagieren	
		12.3.8 Steuerelemente mit Bildlaufleisten versehen	
13	Meni	us und Dialoge	198
	13.1	Menüs mit dem AWT erstellen	198
		13.1.1 Ein Menü erstellen	
		13.1.2 Auf Menü-Ereignisse reagieren	
		13.1.3 Ein Kontextmenü erstellen	
		13.1.4 Menüs mit den Swing-Klassen	
	13.2	Dialoge	
		13.2.1 Standarddialoge nutzen	
		13.2.2 Eigene Dialoge erstellen	
14	lavaE	X-Anwendungen entwickeln	210
14	14.1	Grundkonzept von JavaFX	
	14.1	Aufbau einer JavaFX-Anwendung	
	14.2	Container und Steuerelemente	
	14.3	Ereignisbehandlung	
	14.4	14.4.1 Ereignisbehandlung mit einer allgemeinen Methode	
		14.4.2 Ereignisbehandlung mit einer inneren Klasse	
	14.5		
	14.5	JavaFXML-Anwendungen	
		14.5.2 Den Scene Builder einsetzen	
		15.5.3 Steuerelemente mit dem Controller verbinden	
		13.3.3 Stederelemente mit dem Controller verbinden	223
15	Date	nbankanbindung	
	15.1	Datenbankzugriff mit Java	
		15.1.1 Datenbankanbindung mit JDBC	
		15.1.2 JDBC-Treiber laden und eine Verbindung aufbauen	
		15.1.3 Zugriff auf eine SQLite-Datenbank	
		15.1.4 Nicht-Select-Befehle absetzen	
		15.1.5 Metadaten ermitteln	
	15.2	Weitere Datenbanken ansprechen	
		15.2.1 Einen Treiber hinzufügen	
		15.2.2. Waitara Dataphanktraibar	23/

Teil 2 Auf	gabenpool	235
Aufaaben	pool	236
1	Aufgaben zur Einführung in die Java-Technologie	
2	Aufgaben zum ersten Java-Programm	
3	Aufgaben zur Ein- und Ausgabe in Java	
4	Aufgaben zu Operatoren in Java	
5	Aufgaben zur Selektion und Iteration	240
6	Aufgaben zum Klassenkonzept in Java	244
7	Aufgaben zur Vererbung in Java	
8	Aufgaben zu Arrays in Java	250
9	Aufgaben zu Dateioperationen in Java	255
10	Aufgaben zu fortgeschrittenen Themen in Java	261
11	Aufgaben zur GUI-Programmierung mit dem AWT	266
12	Aufgaben zu Steuerelementen mit dem AWT oder den Swing-Klassen	268
13	Aufgaben zu Menüs und Dialogen	
14	Aufgaben zu JavaFX-Anwendungen	
15	Aufgaben zur Datenbankanbindung	273
Teil 3 Leri	nsituationen	275
Lernsituation	1: Erstellen einer Präsentation mit Hintergrundinformationen zu	
	der Sprache Java (in Deutsch oder Englisch)	276
Lernsituation	5	
	Entwicklungsumgebung in Java (in Deutsch oder Englisch)	277
Lernsituation		
	Memo-System der Support-Abteilung einer Netzwerk-Firma	279
Lernsituation	3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
	Fragebogens	280
Lernsituation		
	dem Model-View-Controller-Konzept	
Lernsituation	6: Entwicklung einer JavaFXML-Anwendung, um Sudokus zu lösen	286
Index		289

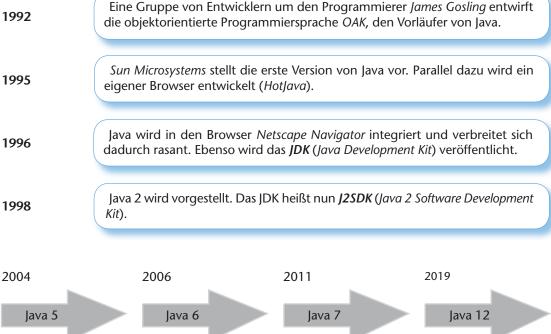
Teil Einführung in Java

1.1	Die Java-Technologie	13
1.2	Die Sprache Java	15
2.1	Ein Java-Projekt anlegen	19
2.2	Das erste Java-Programm	22
2.3	Grundlegende Konventionen in Java	
2.4	Datentypen und Variablen	
3.1	Ausgabe in Java	
3.2	Eingabe über die Konsole	36
4.1	Arithmetische Operatoren	39
4.2	Relationale und logische Operatoren	41
4.3	Bit-Operatoren und weitere Operatoren	43
4.4	Rang von Operatoren	46
5.1	Die Selektion	
5.2	Fuß-, kopf- und zählergesteuerte Iterationen	55
6.1	Die erste Klasse in Java	
6.2	Methoden in Java	
6.3	Weitere Elemente von Klassen	
6.4	Aufzählungstypen	
7.1	Die Vererbung in Java	
7.2	Polymorphimus	88
7.3	Abstrakte Basisklassen	
7.4	Interfaces in Java	
8.1	Ein- und mehrdimensionale Arrays	
8.2	Sortieren von Arrays	
8.3	Besondere Array-Klassen	
9.1	Lesen und Schreiben von Dateien	
9.2	Textdateien lesen und schreiben	
9.3	Serialisierung von Objekten	
9.4	Methoden der Klasse File	
10.1	Ausnahmen – Exceptions	
10.2	Generische Programmierung	
10.3	Lambda-Ausdrücke1	
10.4	Java und UML1	
11.1	GUI-Programmierung	
11.2	Das erste GUI-Programm	
11.3	Text- und Grafikausgabe1	
11.4	Ereignisgesteuerte Programmierung	
12.1	Steuerelemente mit dem AWT	
12.2	Steuerelemente mit Swing-Klassen	182

13.1	Menüs mit dem AWT erstellen	198
13.2	Dialoge	203
	Grundkonzept von JavaFX	
	Aufbau einer JavaFX-Anwendung	
14.3	Container und Steuerelemente	213
14.4	Ereignisbehandlung	218
	JavaFXML-Anwendungen	
15.1	Datenbankzugriff mit Java	226
15.2	Weitere Datenbanken ansprechen	
	•	

1 Einführung in die Java-Technologie

1.1 Die Java-Technologie


1.1.1 Entstehung der Java-Technologie

Anfang der 90er-Jahre wurde bei der Firma *Sun Microsystems* eine Programmiersprache entwickelt, die nicht nur auf PCs, sondern auf verschiedenen elektronischen Geräten (beispielsweise tragbaren Minicomputern oder auch in intelligenten Kaffeemaschinen) einsetzbar sein sollte. Diese Programmiersprache sollte *OAK* heißen. Allerdings war dieser Name geschützt, sodass sich die Entwickler einen neuen Namen einfallen lassen mussten: *JAVA*¹.

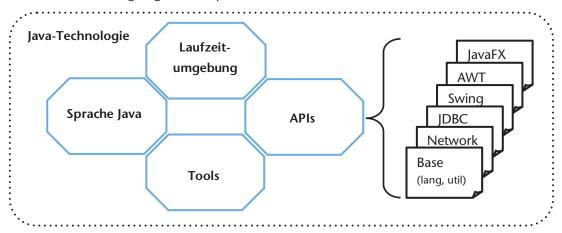
Die erste Version von Java wurde 1995 von *Sun Microsystems* vorgestellt. Die Sprache war internetfähig – sie konnte in einem bestimmten Browser (*HotJava*) ausgeführt werden. Die Firma *Netscape* schloss dann 1996 einen Vertrag mit *Sun Microsystems* und damit breitete sich Java über den berühmten Browser von *Netscape* (den *Netscape Navigator*) rasend schnell aus.

Inzwischen ist Java ein mächtiges Werkzeug zur Entwicklung von Internet-, aber auch Desktop-Anwendungen. Ebenso hat es einen großen Anteil an der Entwicklung im Bereich des *Mobile Computing*.

Die folgende Grafik zeigt den zeitlichen Verlauf der Java-Technologie-Entwicklung:

¹ Der Name Java soll auf den enormen Kaffeedurst der Entwickler zurückzuführen sein, denn Java ist in vielen Ländern (auch den Vereinigten Staaten) ein Synonym für Kaffee.

1.1.2 Eigenschaften der Java-Technologie

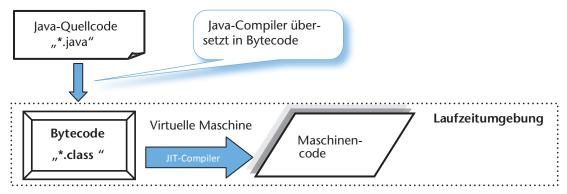

Der große Vorteil von Java ist die Plattformunabhängigkeit. Der Java-Quellcode wird nicht in nativen Code (*Maschinencode*) übersetzt, sondern in eine Art Zwischencode (*Bytecode*). Dieser Bytecode kann dann auf allen Plattformen ausgeführt werden, die über eine entsprechende Java-Laufzeitumgebung verfügen. Die wichtigsten Eigenschaften der Java-Technologie sind:

- **Objektorientierung**: Java ist eine vollständig objektorientierte Sprache.
- Plattformunabhängigkeit: Für die meisten Plattformen wurde eine Java-Laufzeitumgebung entwickelt, sodass von einer relativ großen Plattformunabhängigkeit gesprochen werden kann. Es gibt beispielsweise Laufzeitumgebungen für die Betriebssysteme Solaris (ein Unix-System), Linux, Windows und auch für Mac OS X damit sind die wichtigsten Betriebssysteme bereits abgedeckt.
- **Sicherheit**: Java-Programme laufen kontrolliert in der Java-Laufzeitumgebung ab. Der sogenannte *garbage collector* sorgt beispielsweise für eine sichere Handhabung der Speicherfreigabe.
- Moderne Anwendungsentwicklung: Mit Java können moderne verteilte Systeme programmiert werden. Ebenso wird der Zugriff auf Datenbanken durch mächtige Bibliotheken unterstützt.

1.1.3 Die Komponenten der Java-Technologie

Die Java-Technologie besteht aus verschiedenen Komponenten, die dafür sorgen, dass die oben beschriebenen Eigenschaften umgesetzt werden können. Neben der eigentlichen Sprache Java und der Laufzeitumgebung gehören auch verschiedene APIs (Application Programming Interfaces) dazu. Das alles wird unter dem Java Software Development Kit (kurz JDK) zusammengefasst.

Die nächste Abbildung zeigt die Komponenten noch einmal im Überblick.

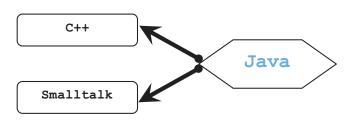

Mit den verschiedenen APIs können die meisten Anwendungen realisiert werden. Die einzelnen APIs sind dabei für die folgenden Bereiche verantwortlich:

- ▶ Base (lang und util): Eine Sammlung von Klassen für elementare Funktionalitäten wie Stringbehandlung, mathematische Operationen, formatierte Ausgaben oder Arraybehandlung.
- ▶ Network: Mithilfe dieser Klassen kann die Netzwerkprogrammierung umgesetzt werden, beispielsweise über TCP-Verbindungen und den Einsatz von Sockets.
- ▶ JDBC (Java Database Connectivity): Mit diesen Klassen werden Datenbanken angesprochen. Sie sind auch die Grundlage für verteilte Anwendungen.
- ▶ Swing und AWT (Abstract Window Toolkit): Diese Klassen stellen Komponenten zur Entwicklung von grafischen Benutzeroberflächen zu Verfügung. JavaFX: Mit diesem Framework ist eine moderne GUI-Entwicklung möglich.

1.1.4 Kompilierung von Java-Programmen

Der Java-Quellcode wird nicht mehr direkt in eine ausführbare Datei, sondern in eine Art Zwischencode (Bytecode) übersetzt. Dieser Zwischencode wird dann von der Java-Laufzeitumgebung ausgeführt. Dabei übersetzt eine sogenannte *virtuelle Maschine JVM* (Java Virtual Machine) den Zwischencode in nativen Code, der dann auf der jeweiligen Plattform ausführbar ist. Die aktuellen virtuellen Maschinen basieren auf intelligenten *Just-in-time-Compilern* (JIT) wie dem *HotSpot*, die durch Optimierungen die Java-Programme sehr schnell ausführen können.

Die folgende Abbildung zeigt den schematischen Ablauf einer Kompilierung:



1.2 Die Sprache Java

1.2.1 Entwicklung der Sprache Java

Die Grundlage für Java wurde Anfang der 90er-Jahre durch ein Entwicklerteam um James Gosling² gelegt. Das Team arbeitete an einer neuen Technologie, die für beliebige Elektrogeräte eine Programmiersprache mit der entsprechenden Laufzeitumgebung zur Verfügung stellen sollte. Die erste Fassung dieser modernen und objektorientierten Sprache nannte Gosling OAK. Aus rechtlichen Gründen musste OAK später umbenannt werden. Es wurde der Name Java ausgewählt (Java ist nicht nur eine Insel, sondern steht auch für eine aromatische Kaffeesorte und wird in vielen Ländern als Synonym für Kaffee benutzt). Java ist syntaktisch stark an C++ angelehnt, hat aber einige Konzepte von C++ (wie die Mehrfachvererbung) nicht übernommen. Im Vergleich ist Java deshalb etwas einfacher zu erlernen als C++. Die Problematik der Speicherreservierung in C++ wurde in Java durch die Entwicklung eines garbage collector gelöst. Die Freigabe von reserviertem Speicher erfolgt dadurch automatisch und entlastet den Entwickler enorm.

Die Web-Programmierung wurde durch Java deutlich vorangebracht (Server-Pages, JavaFX oder Frameworks wie Spring etc.). Durch Java Enterprise Edition-Anwendungen (Java EE-Anwendungen) sind moderne Three-Tier-Anwendungen³ umsetzbar und mit Java ME (Java Platform Micro Edition) ist die moderne App-Entwicklung auf mobilen Endgeräten möglich.

Java "erbt" einige Konzepte der rein objektorientierten Sprache *Smalltalk* und lehnt sich syntaktisch stark an die Hybridsprache C++ an.

Die Sprache *Smalltalk* war eine der ersten objektorientierten Programmiersprachen (neben *Simula-67*) und verfügte schon über solche Konzepte wie *MVC* (*Model View Controller*), das auch in Java sehr erfolgreich eingesetzt wird. Auch das Konzept des *garbage collector* wurde bereits in Smalltalk angewendet.

1.2.2 Eigenschaften der Sprache Java

Die folgenden Eigenschaften zeichnen die Sprache Java aus:

- ► Moderne, objektorientierte Sprache
- ▶ "Etwas" einfacher zu erlernen als C++ (Zeiger müssen nicht verwendet werden)
- ► Plattformunabhängiges Konzept
- Schnelle und effektive Softwareentwicklung (Desktop-Anwendungen, Web-Anwendungen) mit Unterstützung durch mächtige APIs bzw. Klassenbibliotheken
- ► Komfortable Anbindung von beliebigen Datenbanken

² James Gosling war von 1984 bis 2010 bei der Firma Sun Microsystems beschäftigt. Die letzten Jahre war er technischer Leiter der Forschungs- und Entwicklungsabteilung.

³ Eine Three-Tier-Anwendung verfügt über drei Schichten, die in der Regel auf drei verschiedenen Rechnersystemen installiert sind. Die Schichten bestehen aus einer Clientanwendung, einer Server-Anwendung und einer Datenbank.

1.2.3 Schlüsselworte in Java

Die Sprache Java hat einen Wortschatz von ungefähr 50 reservierten Worten – den sogenannten **Schlüsselworten**. Die Schlüsselworte bilden die Grundlage der Programme in Java. Die folgende Tabelle zeigt die Schlüsselworte von Java:

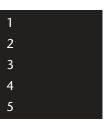
abstract	continue	for	new	switch
assert	default	goto	package	synchronized
boolean	do	if	private	this
break	double	implements	protected	throw
byte	else	import	public	throws
case	enum	instanceof	return	transient
catch	extends	int	short	try
char	final	interface	static	void
class	finally	long	strictfp	volatile
const	float	native	super	while

Die Schlüsselworte const und goto können in Java (noch?) nicht benutzt werden. Sie sind reserviert und stehen deshalb nicht als Namen für Variablen oder Objekte zur Verfügung.

Die Bedeutungen der einzelnen Schlüsselworte werden Schritt für Schritt im Laufe dieses Informationsteils erklärt.

1.2.4 Prozedurale, strukturierte und objektorientierte Programmierung unter Java

In der Programmierung können verschiedene Paradigmen⁴ unterschieden werden. Es gibt Sprachen wie C, mit denen beispielsweise nur strukturiert (und auch prozedural) programmiert werden kann. Andere Sprachen wie C++ können sowohl strukturiert (und prozedural) als auch objektorientiert programmiert werden. Die Sprache Java ist hingegen eine rein objektorientierte Sprache. Trotzdem spielt die strukturierte Programmierung auch bei Java eine Rolle, denn innerhalb des objektorientierten Rahmens muss auch strukturiert programmiert werden.


Zum besseren Verständnis werden diese Begriffe kurz erläutert:

Strukturierte Programmierung

Die strukturierte Programmierung zeichnet sich durch Kontrollstrukturen wie die Auswahl (IF-ELSE) oder die Wiederholungen (FOR, WHILE usw.) aus. Damit erhält ein Programm eine nachvollziehbare Struktur. In den Anfängen der Programmierung war es üblich, Sprunganweisungen (GOTO) in einem Programm zu benutzen. Dadurch wird ein Programm sehr unübersichtlich und fehleranfällig. Strukturierte Programme sind hingegen übersichtlicher und besser wartbar.

Beispiel:

FÜR Var := 1 BIS 5 MIT SCHRITTWEITE 1 SCHREIBE AUF BILDSCHIRM Var

Das Beispiel zeigt eine Wiederholung in sogenanntem Pseudocode⁵. Dieser Code beschreibt den Ablauf des Programmes, ohne allerdings auf eine spezielle Programmiersprache einzugehen. In dem Beispiel wird eine Variable Var so lange um 1 erhöht, bis der Wert 5 erreicht ist. Jeder Wert der Variablen wird dann auf dem Bildschirm ausgegeben.

Prozedurale Programmierung

Die prozedurale Programmierung teilt Programme in kleine Einheiten (Prozeduren oder Funktionen), die für bestimmte Aufgaben verantwortlich sind. Sind diese Prozeduren einmal geschrieben und getestet, können sie immer wieder benutzt werden – das spart Entwicklungszeit und führt auch zu einer besseren Lesbarkeit des Programms.

⁴ Paradigma kommt aus dem Griechischen und heißt so viel wie Muster oder Vorbild.

⁵ Pseudocode ist eine Art Sprache, mit der der Ablauf eines Programmes beschrieben wird. Pseudocode zeichnet sich dadurch aus, dass er näher an der natürlichen Sprache als eine Programmiersprache ist. Ein Programm, das in Pseudocode geschrieben ist, kann problemlos in jede Programmiersprache übersetzt werden.

Beispiel: PROZEDUR Ausgabe SCHREIBE AUF BILDSCHIRM "Hallo" ENDE Hallo Hallo FÜR Var := 1 BIS 5 MIT SCHRITTWEITE 1 AUFRUF Ausgabe Hallo Hallo

Das Beispiel in Pseudocode zeigt eine Prozedur mit dem Namen Ausgabe. Diese Prozedur hat eine Anweisung, die das Wort "Hallo" auf den Bildschirm schreibt. Die bereits bekannte Wiederholung aus dem Beispiel vorher läuft dann 5-mal und ruft jedes Mal die Prozedur Ausgabe auf. Damit steht 5-mal das Wort "Hallo" auf dem Bildschirm.

Objektorientierte Programmierung

Die objektorientierte Programmierung möchte Objekte der realen Welt in einem Programm abbilden. Damit sollen Problemstellungen aus beliebigen Bereichen (Geschäftprozesse, wissenschaftliche Untersuchungen usw.) geeigneter als mit den anderen Programmierparadigmen in Programme umgesetzt werden können.

Im Mittelpunkt der objektorientierten Programmierung steht die **Klasse**, aus der dann konkrete Objekte gebildet werden. Diese Objekte haben bestimmte Eigenschaften (Attribute) und sogenannte Methoden, mit denen diese Eigenschaften beispielsweise verändert werden können.

Beispiel:

```
KLASSE Kunde
Name
Telefon
ENDE

Maier
123456

BILDE OBJEKT K1 VON Kunde
K1.Name := "Maier"
K1.Telefon := "123456"

SCHREIBE AUF BILDSCHIRM K1.Name und K1.Telefon
```

In dem Beispiel wird ein Klasse Kunde definiert. Von dieser Klasse können dann konkrete Objekte wie K1 (für Kunde 1) gebildet werden. Die Eigenschaften des Objektes (Name, Telefon) können mit Werten belegt werden. In diesem Beispiel erhält das Objekt K1 den Namen "Maier" und die Telefonnummer "123456". Anschließend werden Name und Telefon des Objektes auf den Bildschirm geschrieben.

1.2.5 Bestandteile eines Java-Programms

Ein Java-Programm besteht aus einer Folge von endlich vielen und eindeutigen Anweisungen⁶, die mithilfe der Schlüsselworte und selbst gewählter Namen für bestimmte Elemente wie Klassen oder Objekte gebildet werden. Zusätzlich kann ein Java-Programm auch Anweisungen enthalten, die nicht zum eigentlichen Programm gehören, aber die Erstellung des Programms steuern. Das folgende Beispiel zeigt ein erstes einfaches Java-Programm:

```
Damit wird ein eigenes Paket mit dem Namen "java_it_berufe" definiert.

Der import-Befehl sorgt für die Einbindung von Bibliotheken, in diesem Fall der Input-Output-Bibliotheken.
```

⁶ Eine endliche Folge von eindeutigen Anweisungen an den Computer nennt man Algorithmus.

```
Eine eigene Klasse wird definiert.

public class Java_IT_Berufe {

Die main-Methode – entspricht klassischerweise dem "Hauptprogramm".

public static void main(String[] args) {

System.out.println("Hallo Java!");

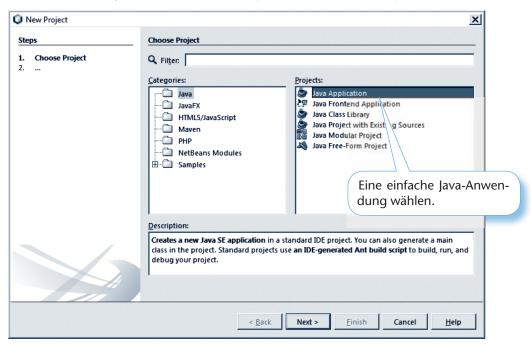
Ein Java-Befehl zur Ausgabe einer Zeichenkette auf dem Bildschirm
```

In dem obigen Beispiel wird deutlich, dass auch ein einfaches Java-Programm schon einen relativ komplizierten Aufbau hat. Das liegt daran, dass Java eine vollständig objektorientierte Sprache ist und deshalb immer auch eine Klasse definiert werden muss. Dieser Aufbau wird nun in den folgenden Kapiteln Schritt für Schritt erläutert.

2 Das erste Java-Programm

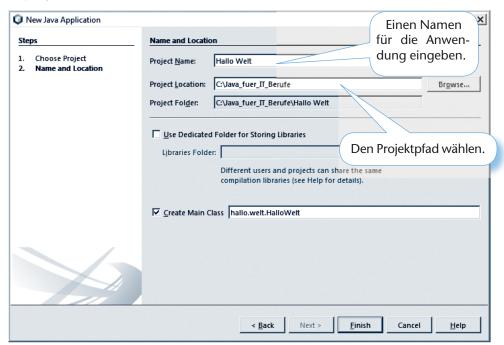
2.1 Ein Java-Projekt anlegen

Die integrierte Entwicklungsumgebung *Apache NetBeans IDE 10.0* ist eine komfortable Umgebung, um Java-Programme zu entwickeln. Besonders erfreulich ist der Umstand, dass die Umgebung kostenfrei im Internet bereit steht. Ein Java-Programm besteht aus einer oder mehreren Quellcodedateien. Diese Dateien werden in einem Projekt organisiert. *NetBeans* bietet eine Vielzahl von Projekten an. Im Folgenden sind die wichtigsten aufgeführt:

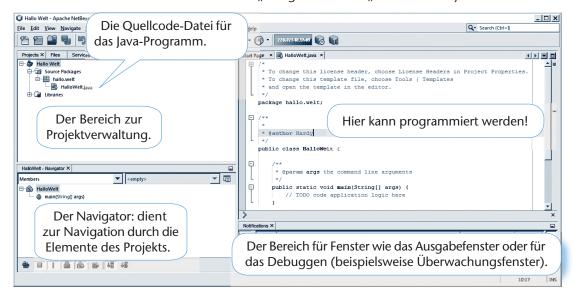

- Java-Anwendung (erstellt verschiedene Basis-Anwendungen)
- JavaFX-Anwendung (erstellt Vorlagen für JavaFX-GUI-Anwendungen)
- HMTL5/Javascript (erstellt Vorlagen f
 ür Web-Anwendungen auf HTML5-Basis)
- Maven (ein Build-Tool: dient zur Verwaltung / Standardisierung von Java-Anwendung)

In diesem Buch sind hauptsächlich zwei Projektformen von Bedeutung: die Java-Anwendung und die JavaFX-Anwendung.

Die Java-Anwendung ist ausreichend, um eine einfache Ein- und Ausgabemöglichkeit für die ersten Java-Programme zu haben. In den späteren Kapiteln wird dann die JavaFX-Anwendung verwendet. Die einfache Java-Anwendung ist natürlich nicht so ansprechend wie ein Programm mit graphischer Benutzeroberfläche, aber, um die Grundlagen der Sprache zu erlernen, völlig ausreichend.


Anlegen eines neuen Projektes:

- Starten Sie Apache NetBeans IDE 10.0.
- Wählen Sie den Menüpunkt Datei → Neues Projekt (oder File → New Project¹).



¹ Hier wird die englische Version von Apache Netbeans genutzt, deshalb werden sowohl deutsche als auch englische Befehle angegeben.

Nach dem Bestätigen mit "Weiter" oder "Next" werden die Eingabe eines Namens und die Wahl eines Projektpfades erwartet.

Anschließend kann das durch einen Klick auf "Fertigstellen" oder "Finish" das Projekt erstellt werden.

Die Entwicklungsumgebung hat ein Projekt mit dem gewählten Namen (hier "Hallo Welt") angelegt. Es können beliebig viele weitere Projekte angelegt werden. Innerhalb des Projektes ist eine Quellcode-Datei "HalloWelt.java" angelegt. Zusätzlich wird die verwendete Bibliothek angezeigt. In der angelegten Quellcode-Datei ist bereits ein Grundgerüst vorhanden, welches ein lauffähiges Java-Programm darstellt – allerdings ohne Funktionalitäten.